Non-adaptedness and vulnerability to climate change threaten Plathymenia trees (Fabaceae) from the Cerrado and Atlantic Forest

[1]  D. R. Vidanapathirana,et al.  Distribution status and influence of climate change on patterns of distribution of hornbills in Sri Lanka , 2024, Global Ecology and Conservation.

[2]  M. Heuertz,et al.  Genomic signatures of ecological divergence between savanna and forest populations of a neotropical tree. , 2023, Annals of botany.

[3]  P. Unmack,et al.  Natural hybridization reduces vulnerability to climate change , 2023, Nature Climate Change.

[4]  G. Talukdar,et al.  Predicting the impact of future climate changes and range-shifts of Indian hornbills (family: Bucerotidae) , 2023, Ecol. Informatics.

[5]  D. Mucida,et al.  Vulnerability of the Cerrado–Atlantic Forest ecotone in the Espinhaço Range Biosphere Reserve to climate change , 2022, Theoretical and Applied Climatology.

[6]  D. Crouzillat,et al.  Ecological and genomic vulnerability to climate change across native populations of Robusta coffee (Coffea canephora) , 2022, Global change biology.

[7]  D. Crouzillat,et al.  Adaptive potential of Coffea canephora from Uganda in response to climate change , 2022, Molecular ecology.

[8]  Plathymenia foliolosa , 2022, CABI Compendium.

[9]  Plathymenia reticulata , 2022, CABI Compendium.

[10]  M. Heuertz,et al.  Hybrid zone of a tree in a Cerrado/Atlantic Forest ecotone as a hotspot of genetic diversity and conservation , 2022, Ecology and evolution.

[11]  Bette A. Loiselle,et al.  Niche dynamics of Memecylon in Sri Lanka: Distribution patterns, climate change effects, and conservation priorities , 2021, Ecology and evolution.

[12]  Thibaut Capblancq,et al.  Redundancy analysis: A Swiss Army Knife for landscape genomics , 2021, Methods in Ecology and Evolution.

[13]  M. Cardoso,et al.  The Brazilian Cerrado is becoming hotter and drier , 2021, Global change biology.

[14]  M. Fitzpatrick,et al.  Genomic Prediction of (Mal)Adaptation Across Current and Future Climatic Landscapes , 2020 .

[15]  Vikram E. Chhatre,et al.  Experimental support for genomic prediction of climate maladaptation using the machine learning approach Gradient Forests , 2020, Molecular ecology resources.

[16]  R. Mariano,et al.  Local-scale tree community ecotones are distinct vegetation types instead of mixed ones: a case study from the Cerrado–Atlantic forest ecotonal region in Brazil , 2020 .

[17]  A. F. Souza,et al.  Aridity, soil and biome stability influence plant ecoregions in the Atlantic Forest, a biodiversity hotspot in South America , 2019, Ecography.

[18]  J. A. Ratter,et al.  Delimiting floristic biogeographic districts in the Cerrado and assessing their conservation status , 2019, Biodiversity and Conservation.

[19]  F. Fernandes,et al.  Genetic data improve the assessment of the conservation status based only on herbarium records of a Neotropical tree , 2019, Scientific Reports.

[20]  M. Cianciaruso,et al.  How to live in contrasting habitats? Acquisitive and conservative strategies emerge at inter- and intraspecific levels in savanna and forest woody plants , 2018, Perspectives in Plant Ecology, Evolution and Systematics.

[21]  M. Bueno,et al.  Genetic and Historical Colonization Analyses of an Endemic Savanna Tree, Qualea grandiflora, Reveal Ancient Connections Between Amazonian Savannas and Cerrado Core , 2018, Front. Plant Sci..

[22]  M. Bueno,et al.  Multiple Pleistocene refugia in the Brazilian cerrado: evidence from phylogeography and climatic nichemodelling of two Qualea species (Vochysiaceae) , 2017 .

[23]  L. Beaumont,et al.  Influence of adaptive capacity on the outcome of climate change vulnerability assessment , 2017, Scientific Reports.

[24]  Stephen E. Fick,et al.  WorldClim 2: new 1‐km spatial resolution climate surfaces for global land areas , 2017 .

[25]  Brenna R. Forester,et al.  Comparing methods for detecting multilocus adaptation with multivariate genotype-environment associations , 2017, bioRxiv.

[26]  B. Soares-Filho,et al.  Moment of truth for the Cerrado hotspot , 2017, Nature Ecology &Evolution.

[27]  W. Lutz,et al.  The human core of the shared socioeconomic pathways: Population scenarios by age, sex and level of education for all countries to 2100 , 2017, Global environmental change : human and policy dimensions.

[28]  R. Moss,et al.  The Scenario Model Intercomparison Project (ScenarioMIP) for CMIP6 , 2016 .

[29]  M. Heuertz,et al.  Species-specific phylogeographical patterns and Pleistocene east–west divergence in Annona (Annonaceae) in the Brazilian Cerrado , 2016 .

[30]  A. Lowe,et al.  Constraints to and conservation implications for climate change adaptation in plants , 2016, Conservation Genetics.

[31]  P. V. Eisenlohr,et al.  Revisiting Patterns of Tree Species Composition and their Driving Forces in the Atlantic Forests of Southeastern Brazil , 2015 .

[32]  F. Scarano,et al.  Brazilian Atlantic forest: impact, vulnerability, and adaptation to climate change , 2015, Biodiversity and Conservation.

[33]  Felix Gugerli,et al.  A practical guide to environmental association analysis in landscape genomics , 2015, Molecular ecology.

[34]  M. Marques,et al.  How much do we know about the endangered Atlantic Forest? Reviewing nearly 70 years of information on tree community surveys , 2015, Biodiversity and Conservation.

[35]  Matthew E. Aiello-Lammens,et al.  spThin: an R package for spatial thinning of species occurrence records for use in ecological niche models , 2015 .

[36]  B. Walter,et al.  Fitossociologia do componente arbóreo e florística de um remanescente de cerrado sentido restrito contíguo a áreas de agricultura na porção leste do Distrito Federal, Brasil , 2014 .

[37]  S. Gotsch,et al.  Ecological thresholds at the savanna-forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. , 2012, Ecology letters.

[38]  H. Hoekstra,et al.  Double Digest RADseq: An Inexpensive Method for De Novo SNP Discovery and Genotyping in Model and Non-Model Species , 2012, PloS one.

[39]  M. B. Lovato,et al.  Isolation of high quality and polysaccharide-free DNA from leaves of Dimorphandra mollis (Leguminosae), a tree from the Brazilian Cerrado. , 2012, Genetics and molecular research : GMR.

[40]  M. B. Lovato,et al.  Stem radial increment of forest and savanna ecotypes of a Neotropical tree: relationships with climate, phenology, and water potential , 2012, Trees.

[41]  F. Valladares,et al.  Which Extent is Plasticity to Light Involved in the Ecotypic Differentiation of a Tree Species from Savanna and Forest? , 2011 .

[42]  Cajo J. F. ter Braak,et al.  Testing the significance of canonical axes in redundancy analysis , 2011 .

[43]  E. Finnegan,et al.  Plant phenotypic plasticity in a changing climate. , 2010, Trends in plant science.

[44]  C. Joly,et al.  Brazilian Atlantic Forest lato sensu: the most ancient Brazilian forest, and a biodiversity hotspot, is highly threatened by climate change. , 2010, Brazilian journal of biology = Revista brasleira de biologia.

[45]  R. Lande,et al.  Adaptation, Plasticity, and Extinction in a Changing Environment: Towards a Predictive Theory , 2010, PLoS biology.

[46]  R. M. L. Novaes,et al.  Phylogeography of Plathymenia reticulata (Leguminosae) reveals patterns of recent range expansion towards northeastern Brazil and southern Cerrados in Eastern Tropical South America , 2010, Molecular ecology.

[47]  R. M. L. Novaes,et al.  An efficient protocol for tissue sampling and DNA isolation from the stem bark of Leguminosae trees. , 2009, Genetics and molecular research : GMR.

[48]  M. B. Lovato,et al.  Populational approach in ecophysiological studies: the case of Plathymenia reticulata, a tree from Cerrado and Atlantic Forest , 2008 .

[49]  S. Yeaman,et al.  Adaptation, migration or extirpation: climate change outcomes for tree populations , 2008, Evolutionary applications.

[50]  T. McMahon,et al.  Updated world map of the Köppen-Geiger climate classification , 2007 .

[51]  M. B. Lovato,et al.  Phenological variation within and among populations of Plathymenia reticulata in Brazilian Cerrado, the Atlantic Forest and transitional sites. , 2005, Annals of botany.

[52]  J. Felfili,et al.  Fitossociologia de um fragmento de cerrado sensu stricto na APA do Paranoá, DF, Brasil , 2004 .

[53]  W. Hoffmann,et al.  Comparative fire ecology of tropical savanna and forest trees , 2003 .

[54]  G. Lewis,et al.  REVISION OF PLATHYMENIA ( LEGUMINOSAE–MIMOSOIDEAE ) , 2003 .

[55]  R. Mittermeier,et al.  Biodiversity hotspots for conservation priorities , 2000, Nature.

[56]  Pierre Legendre,et al.  DISTANCE‐BASED REDUNDANCY ANALYSIS: TESTING MULTISPECIES RESPONSES IN MULTIFACTORIAL ECOLOGICAL EXPERIMENTS , 1999 .

[57]  M. Lima-Ribeiro,et al.  A large historical refugium explains spatial patterns of genetic diversity in a Neotropical savanna tree species , 2017, Annals of botany.

[58]  M. B. Lovato,et al.  Variability in fruit and seed morphology among and within populations of Plathymenia (Leguminosae-Mimosoideae) in areas of the Cerrado, the Atlantic forest, and transitional sites. , 2006, Plant biology.

[59]  G. P. Silva,et al.  Fitossociologia de um trecho de Cerrado sensu stricto na Bacia do Rio Corumbá - área de influência direta do aproveitamento hidrelétrico Corumbá IV (GO). , 2005 .