Radiogenic Pb mobilization induced by shock metamorphism of zircons in the Apollo 72255 Civet Cat norite clast

[1]  Xian‐Hua Li,et al.  Impact and Correction of Analytical Positioning on Accuracy of Zircon U-Pb Dating by SIMS , 2020, Frontiers in Chemistry.

[2]  D. Larson,et al.  Impact-triggered nanoscale Pb clustering and Pb loss domains in Archean zircon , 2020, Contributions to Mineralogy and Petrology.

[3]  Xian‐Hua Li,et al.  Breakthrough of 2‐ to 3‐μm scale U–Pb zircon dating using Cameca IMS‐1280HR SIMS , 2020, Surface and Interface Analysis.

[4]  M. Kusiak,et al.  Lead oxide nanospheres in seismically deformed zircon grains , 2019, Geochimica et Cosmochimica Acta.

[5]  D. Larson,et al.  A Nanoscale Record of Impact-Induced Pb Mobility in Lunar Zircon , 2019, Microscopy and Microanalysis.

[6]  M. Whitehouse,et al.  Mechanisms and consequences of intra-crystalline enrichment of ancient radiogenic Pb in detrital Hadean zircons from the Jack Hills, Western Australia , 2019, Earth and Planetary Science Letters.

[7]  J. Darling,et al.  Shock‐induced microtextures in lunar apatite and merrillite , 2019, Meteoritics & Planetary Science.

[8]  D. Moser,et al.  A Numerical Model for Twin Nucleation in Shocked Zircon and Comparison With Natural Samples , 2018, Geophysical Research Letters.

[9]  M. Whitehouse,et al.  A 4463 Ma apparent zircon age from the Jack Hills (Western Australia) resulting from ancient Pb mobilization , 2018 .

[10]  M. Kusiak,et al.  Metallic Pb nanospheres in ultra-high temperature metamorphosed zircon from southern India , 2017, Mineralogy and Petrology.

[11]  D. Moser,et al.  Coordinated U–Pb geochronology, trace element, Ti-in-zircon thermometry and microstructural analysis of Apollo zircons , 2017 .

[12]  J. Snape,et al.  Impact history of the Apollo 17 landing site revealed by U‐Pb SIMS ages , 2017 .

[13]  E. Kovaleva,et al.  The effect of crystal-plastic deformation on isotope and trace element distribution in zircon: Combined BSE, CL, EBSD, FEG-EMPA and NanoSIMS study , 2017 .

[14]  P. Boehnke,et al.  Early formation of the Moon 4.51 billion years ago , 2017, Science Advances.

[15]  S. Reddy,et al.  Mechanisms of deformation-induced trace element migration in zircon resolved by atom probe and correlative microscopy , 2016 .

[16]  Wei Yang,et al.  NanoSIMS measurements of trace elements at the micron scale interface between zircon and silicate glass , 2016 .

[17]  M. Bizzarro,et al.  Lead isotope evidence for a young formation age of the Earth–Moon system , 2016 .

[18]  Wei Yang,et al.  NanoSIMS imaging method of zircon U-Pb dating , 2016, Science China Earth Sciences.

[19]  S. Reddy,et al.  Nanogeochronology of discordant zircon measured by atom probe microscopy of Pb-enriched dislocation loops , 2016, Science Advances.

[20]  D. Kring,et al.  Identifying the geologic context of Apollo 17 impact melt breccias , 2016 .

[21]  Richard Armstrong,et al.  Deformation-induced trace element redistribution in zircon revealed using atom probe tomography , 2016, Nature Communications.

[22]  P. Bievre,et al.  IUPAC-IUGS recommendation on the half life of 87Rb , 2015 .

[23]  M. Kusiak,et al.  Metallic lead nanospheres discovered in ancient zircons , 2015, Proceedings of the National Academy of Sciences.

[24]  L. Borg,et al.  A review of lunar chronology revealing a preponderance of 4.34–4.37 Ga ages , 2015 .

[25]  S. Mojzsis,et al.  A protracted timeline for lunar bombardment from mineral chemistry, Ti thermometry and U–Pb geochronology of Apollo 14 melt breccia zircons , 2015, Contributions to Mineralogy and Petrology.

[26]  G. Ravindra Kumar,et al.  Behaviour of radiogenic Pb in zircon during ultrahigh-temperature metamorphism: an ion imaging and ion tomography case study from the Kerala Khondalite Belt, southern India , 2014, Contributions to Mineralogy and Petrology.

[27]  J. P. Greenwood,et al.  The Lunar Apatite Paradox , 2014, Science.

[28]  Simon A. Wilde,et al.  Hadean age for a post-magma-ocean zircon confirmed by atom-probe tomography , 2014 .

[29]  M. Kusiak,et al.  Changes in zircon chemistry during Archean UHT metamorphism in the Napier Complex, Antarctica , 2013, American Journal of Science.

[30]  Q. Yin,et al.  SIMS Pb-Pb and U-Pb age determination of eucrite zircons at < 5 μm scale and the first 50 Ma of the thermal history of Vesta , 2013 .

[31]  Q. Crowley,et al.  Lattice distortion in a zircon population and its effects on trace element mobility and U–Th–Pb isotope systematics: examples from the Lewisian Gneiss Complex, northwest Scotland , 2013, Contributions to Mineralogy and Petrology.

[32]  M. Kusiak,et al.  Mobilization of radiogenic Pb in zircon revealed by ion imaging: Implications for early Earth geochronology , 2013 .

[33]  F. Corfu A century of U-Pb geochronology: The long quest towards concordance , 2012 .

[34]  W. Bottke,et al.  A sawtooth-like timeline for the first billion years of lunar bombardment , 2012, 1208.4624.

[35]  B. Hofmann,et al.  Very high-K KREEP-rich clasts in the impact melt breccia of the lunar meteorite SaU 169: New constraints on the last residue of the Lunar Magma Ocean , 2012 .

[36]  Wei Yang,et al.  Precise micrometre-sized Pb-Pb and U-Pb dating with NanoSIMS , 2012 .

[37]  R. Korotev,et al.  Comparative zircon U–Pb geochronology of impact melt breccias from Apollo 12 and lunar meteorite SaU 169, and implications for the age of the Imbrium impact , 2012 .

[38]  P. Renne,et al.  Response to the comment by W.H. Schwarz et al. on Joint determination of 40K decay constants and 40 , 2011 .

[39]  N. Timms,et al.  Complex magmatic and impact history prior to 4.1 Ga recorded in zircon from Apollo 17 South Massif aphanitic breccia 73235 , 2011 .

[40]  Q. Yin,et al.  Precise U–Pb zircon dating at a scale of <5 micron by the CAMECA 1280 SIMS using a Gaussian illumination probe , 2011 .

[41]  S. Reddy,et al.  Relationship among titanium, rare earth elements, U–Pb ages and deformation microstructures in zircon: Implications for Ti-in-zircon thermometry , 2011 .

[42]  M. Whitehouse,et al.  The comparative behavior of apatite‐zircon U‐Pb systems in Apollo 14 breccias: Implications for the thermal history of the Fra Mauro Formation , 2009 .

[43]  N. Timms,et al.  Thermal history recorded by the Apollo 17 impact melt breccia 73217 , 2009 .

[44]  Xian‐Hua Li,et al.  Precise determination of Phanerozoic zircon Pb/Pb age by multicollector SIMS without external standardization , 2009 .

[45]  S. Reddy,et al.  Zircon U Pb strain chronometry reveals deep impact-triggered flow , 2009 .

[46]  F. Corfu,et al.  Zircon M257 ‐ a Homogeneous Natural Reference Material for the Ion Microprobe U‐Pb Analysis of Zircon , 2008 .

[47]  M. Whitehouse,et al.  Plesovice zircon : A new natural reference material for U-Pb and Hf isotopic microanalysis , 2008 .

[48]  M. Whitehouse,et al.  SIMS U–Pb study of zircon from Apollo 14 and 17 breccias: Implications for the evolution of lunar KREEP , 2008 .

[49]  P. Trimby,et al.  Crystal-plastic deformation of zircon: A defect in the assumption of chemical robustness , 2006 .

[50]  R. Ewing,et al.  Nanoscale occurrence of Pb in an Archean zircon , 2004 .

[51]  F. Corfu,et al.  Atlas of Zircon Textures , 2003 .

[52]  P. Renne,et al.  Intercalibration of standards, absolute ages and uncertainties in 40Ar/39Ar dating , 1998 .

[53]  Ian S. Williams,et al.  Pb, U and Th diffusion in natural zircon , 1997, Nature.

[54]  E. Watson,et al.  The incorporation of Pb into zircon , 1997 .

[55]  E. Krogstad,et al.  Interpretation of discordant U‐Pb zircon ages: An evaluation , 1997 .

[56]  G. B. Dalrymple,et al.  Argon-40/Argon-39 Age Spectra of Apollo 17 Highlands Breccia Samples by Laser Step Heating and the Age of the Serenitatis Basin , 1996 .

[57]  W. Compston,et al.  Uranium‐lead ages for lunar zircons: Evidence for a prolonged period of granophyre formation from 4.32 to 3.88 Ga , 1996 .

[58]  W. McDonough,et al.  The composition of the Earth , 1995 .

[59]  J. D. Miller,et al.  Precise U‐Pb ages of Duluth Complex and related mafic intrusions, northeastern Minnesota: Geochronological insights to physical, petrogenetic, paleomagnetic, and tectonomagmatic processes associated with the 1.1 Ga Midcontinent Rift System , 1993 .

[60]  W. J. Weber,et al.  Alpha-decay event damage in zircon , 1991 .

[61]  W. Compston,et al.  Unsupported radiogenic Pb in zircon: a cause of anomalously high Pb-Pb, U-Pb and Th-Pb ages , 1984 .

[62]  H. Mori,et al.  Comparison of thermal history of orthopyroxenes between Lunar Norites 78236, 72255, and diogenites , 1982 .

[63]  D. Stoeser,et al.  Boulder 1, Station 2, Apollo 17: Petrology and petrogenesis , 1975 .

[64]  H. Schmitt Geological model for Boulder 1 at Station 2, South Massif, Valley of Taurus-Littrow , 1975 .

[65]  M. Tatsumoto,et al.  U-Th-Pb systematics of selected samples from Apollo 17, Boulder 1, Station 2 , 1975 .

[66]  R. Korotev,et al.  Major and trace element chemistry of Boulder 1 at Station 2, Apollo 17 , 1975 .

[67]  S. Niemeyer,et al.  Rare gas constraints on the history of Boulder 1, Station 2, Apollo 17 , 1975 .

[68]  J. Wood The nature and origin of Boulder 1, Station 2, Apollo 17 , 1975 .

[69]  W. Compston,et al.  Rb-Sr ages of clasts from within Boulder 1, Station 2, Apollo 17 , 1975 .

[70]  J. Kramers,et al.  Approximation of terrestrial lead isotope evolution by a two-stage model , 1975 .

[71]  C. Stirling,et al.  Uranium isotope fractionation , 2017 .

[72]  Francis M. McCubbin,et al.  Origin Of The Lunar Highlands Mg-Suite: An Integrated Petrology, Geochemistry, Chronology, And Remote Sensing Perspective , 2015 .

[73]  D. Cherniak Diffusion in Accessory Minerals: Zircon, Titanite, Apatite, Monazite and Xenotime , 2010 .

[74]  Nicholas E. Timms,et al.  Timing of crystallization of the lunar magma ocean constrained by the oldest zircon , 2009 .

[75]  T. Wenzel,et al.  Metamictisation of natural zircon: accumulation versus thermal annealing of radioactivity-induced damage , 2001 .

[76]  S. Winzer,et al.  Origin of 78235, a lunar norite cumulate , 1975 .