Clipping: a technique for improving retrieval performance

The authors present a technique for improving retrieval performance which they call clipping. Clipping is based on the manipulation of the original query terms, without attempting query expansion. The idea is to use a small set of query terms, which they call a clipping set, to clip the original answer set, reducing the number of documents in it. They discuss the alternatives that such a clipping technique opens up and characterize what they call the clipping problem. This problem consists basically of finding a good clipped answer set (i.e., one which yields improved retrieval performance) among many possible ones. They show that, for queries with a proper formulation, gains in precision as high as 50% can be obtained.

[1]  Stephen E. Robertson,et al.  Okapi at TREC-3 , 1994, TREC.

[2]  Ron Weiss,et al.  Fast and effective query refinement , 1997, SIGIR '97.

[3]  Nicholas J. Belkin,et al.  Information filtering and information retrieval: two sides of the same coin? , 1992, CACM.

[4]  Chris Buckley,et al.  New Retrieval Approaches Using SMART: TREC 4 , 1995, TREC.

[5]  W. Bruce Croft,et al.  Relevance feedback and inference networks , 1993, SIGIR.

[6]  Gerard Salton,et al.  Improving retrieval performance by relevance feedback , 1997, J. Am. Soc. Inf. Sci..

[7]  Ben Shneiderman,et al.  Visual information seeking: tight coupling of dynamic query filters with starfield displays , 1994, CHI '94.

[8]  IJsbrand Jan Aalbersberg,et al.  Incremental relevance feedback , 1992, SIGIR '92.

[9]  Sadaaki Miyamoto Feedback in Information Retrieval and Search for Clusters , 1990 .

[10]  Michael McGill,et al.  Introduction to Modern Information Retrieval , 1983 .

[11]  Larry Fitzpatrick,et al.  Automatic feedback using past queries: social searching? , 1997, SIGIR '97.

[12]  Robert R. Korfhage,et al.  Visualization of a Document Collection: The VIBE System , 1993, Inf. Process. Manag..

[13]  Vijay V. Raghavan,et al.  On the reuse of past optimal queries , 1995, SIGIR '95.

[14]  Gerard Salton,et al.  Term-Weighting Approaches in Automatic Text Retrieval , 1988, Inf. Process. Manag..

[15]  Chris Buckley,et al.  Learning routing queries in a query zone , 1997, SIGIR '97.

[16]  Alistair Moffat,et al.  The design of a high performance information filtering system , 1996, SIGIR '96.

[17]  J. J. Rocchio,et al.  Relevance feedback in information retrieval , 1971 .

[18]  Hector Garcia-Molina,et al.  Index structures for information filtering under the vector space model , 1994, Proceedings of 1994 IEEE 10th International Conference on Data Engineering.

[19]  Stephen E. Robertson,et al.  On Term Selection for Query Expansion , 1991, J. Documentation.

[20]  James Allan,et al.  Incremental relevance feedback for information filtering , 1996, SIGIR '96.

[21]  W. Bruce Croft,et al.  Query expansion using local and global document analysis , 1996, SIGIR '96.

[22]  Gerard Salton,et al.  The SMART Retrieval System—Experiments in Automatic Document Processing , 1971 .

[23]  James Allan,et al.  INQUERY at TREC-5 , 1996, TREC.

[24]  Donna K. Harman,et al.  Relevance feedback revisited , 1992, SIGIR '92.

[25]  James P. Callan,et al.  Document filtering with inference networks , 1996, SIGIR '96.

[26]  Kui-Lam Kwok,et al.  A new method of weighting query terms for ad-hoc retrieval , 1996, SIGIR '96.