Treatment of size-dependent aerosol transport processes using quadrature based moment methods

Abstract The use of moment methods for simulation of aerosol settling and diffusion phenomena in which the settling velocity and diffusion coefficient are functions of the size of the particles leads to difficult computational problems, especially if the moment equations need to be closed. In this study, a simple one dimensional problem of aerosol diffusion and gravitational settling is carried out using quadrature method of moments (QMOM) and the direct quadrature method of moments (DQMOM). Analytical solutions can be obtained for the number density function, and issues related to the integration of the solutions to get the moments are discussed. Comparison of the solutions of the moment equations to the moments obtained from the analytical solutions reveals that solutions depend on the initial choice of moments. Results also indicate that the proper choice of moments of the initial number density function may be a significant factor in obtaining more accurate solutions from QMOM or DQMOM.

[1]  Robert McGraw,et al.  Representation of generally mixed multivariate aerosols by the quadrature method of moments: II. Aerosol dynamics , 2004 .

[2]  D. E. Rosner,et al.  Bivariate moment simulation of coagulating and sintering nanoparticles in flames , 2002 .

[3]  R. Fox,et al.  Application of the direct quadrature method of moments to polydisperse gas–solid fluidized beds , 2004 .

[4]  Robert McGraw,et al.  Description of Aerosol Dynamics by the Quadrature Method of Moments , 1997 .

[5]  S. Pratsinis Simultaneous nucleation, condensation, and coagulation in aerosol reactors , 1988 .

[6]  Daniele Marchisio,et al.  Implementation of the Quadrature Method of Moments in CFD codes for aggregation-breakage problems , 2003 .

[7]  C. N. Davies,et al.  The Mechanics of Aerosols , 1964 .

[8]  Jesse T. Pikturna,et al.  Quadrature method of moments for population‐balance equations , 2003 .

[9]  A. Einstein On the movement of small particles suspended in a stationary liquid demanded by the molecular-kinetic theory of heart , 1905 .

[10]  Ofodike A. Ezekoye,et al.  Evaluation of the 1-point quadrature approximation in QMOM for combined aerosol growth laws , 2003 .

[11]  M. Wilck,et al.  A general approximation method for solving integrals containing a lognormal weighting function , 2001 .

[12]  D. E. Rosner,et al.  Bivariate Extension of the Quadrature Method of Moments for Modeling Simultaneous Coagulation and Sintering of Particle Populations. , 2001, Journal of colloid and interface science.

[13]  S. Friedlander Smoke, Dust, and Haze: Fundamentals of Aerosol Dynamics , 2000 .

[14]  John H. Seinfeld,et al.  Simulation of multicomponent aerosol dynamics , 1992 .

[15]  The generalized approximation method for modeling coagulation kinetics—Part 1: justification and implementation of the method , 2002 .

[16]  R. McGraw,et al.  Method of Moments Solutions for a Laminar Flow Aerosol Reactor Model , 2001 .

[17]  B. Bernstein,et al.  Solutions to the Fokker-Planck equations governing simultaneous diffusion and gravitational settling of aerosol particles from a stationary gas in a horizontal circular tube , 1978 .

[18]  Robert McGraw,et al.  Representation of generally mixed multivariate aerosols by the quadrature method of moments: I. Statistical foundation , 2004 .

[19]  Daniele Marchisio,et al.  Solution of population balance equations using the direct quadrature method of moments , 2005 .

[20]  S. Katz,et al.  Some problems in particle technology: A statistical mechanical formulation , 1964 .

[21]  Michael Frenklach,et al.  Aerosol dynamics modeling using the method of moments , 1987 .

[22]  R. Fox Computational Models for Turbulent Reacting Flows , 2003 .

[23]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[24]  S. Garrick,et al.  A comparison of diffusive transport in a moment method for nanoparticle coagulation , 2004 .

[25]  Robert McGraw,et al.  Chemically resolved aerosol dynamics for internal mixtures by the quadrature method of moments , 2003 .

[26]  R. D. Vigil,et al.  Quadrature method of moments for aggregation-breakage processes. , 2003, Journal of colloid and interface science.

[27]  A. Einstein Über die von der molekularkinetischen Theorie der Wärme geforderte Bewegung von in ruhenden Flüssigkeiten suspendierten Teilchen [AdP 17, 549 (1905)] , 2005, Annalen der Physik.

[28]  C. N. Davies The sedimentation and diffusion of small particles , 1949, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.