Equalization of Synaptic Efficacy by Activity- and

[1]  W. Rall Core Conductor Theory and Cable Properties of Neurons , 2011 .

[2]  Patrick D. Roberts,et al.  Computational Consequences of Temporally Asymmetric Learning Rules: II. Sensory Image Cancellation , 2000, Journal of Computational Neuroscience.

[3]  J. Magee,et al.  Impaired Regulation of Synaptic Strength in Hippocampal Neurons from GluR1‐Deficient Mice , 2003, The Journal of physiology.

[4]  P. J. Sjöström,et al.  Neocortical LTD via Coincident Activation of Presynaptic NMDA and Cannabinoid Receptors , 2003, Neuron.

[5]  Haim Sompolinsky,et al.  Learning Input Correlations through Nonlinear Temporally Asymmetric Hebbian Plasticity , 2003, The Journal of Neuroscience.

[6]  J. Magee,et al.  Mechanism of the distance‐dependent scaling of Schaffer collateral synapses in rat CA1 pyramidal neurons , 2003, The Journal of physiology.

[7]  Tomoki Fukai,et al.  A Stochastic Method to Predict the Consequence of Arbitrary Forms of Spike-Timing-Dependent Plasticity , 2003, Neural Computation.

[8]  K. Holthoff,et al.  A problem with Hebb and local spikes , 2002, Trends in Neurosciences.

[9]  Nace L. Golding,et al.  Dendritic spikes as a mechanism for cooperative long-term potentiation , 2002, Nature.

[10]  Y. Dan,et al.  Spike-timing-dependent synaptic modification induced by natural spike trains , 2002, Nature.

[11]  G. Stuart,et al.  Dependence of EPSP Efficacy on Synapse Location in Neocortical Pyramidal Neurons , 2002, Science.

[12]  P. J. Sjöström,et al.  Rate, Timing, and Cooperativity Jointly Determine Cortical Synaptic Plasticity , 2001, Neuron.

[13]  J. Magee,et al.  Distance-Dependent Increase in AMPA Receptor Number in the Dendrites of Adult Hippocampal CA1 Pyramidal Neurons , 2001, The Journal of Neuroscience.

[14]  Wulfram Gerstner,et al.  Intrinsic Stabilization of Output Rates by Spike-Based Hebbian Learning , 2001, Neural Computation.

[15]  L. Abbott,et al.  Cortical Development and Remapping through Spike Timing-Dependent Plasticity , 2001, Neuron.

[16]  Idan Segev,et al.  Synaptic scaling in vitro and in vivo , 2001, Nature Neuroscience.

[17]  Daniel D. Lee,et al.  Equilibrium properties of temporally asymmetric Hebbian plasticity. , 2000, Physical review letters.

[18]  R C Reid,et al.  Divergence and reconvergence: multielectrode analysis of feedforward connections in the visual system. , 2001, Progress in brain research.

[19]  Henry Markram,et al.  An Algorithm for Modifying Neurotransmitter Release Probability Based on Pre- and Postsynaptic Spike Timing , 2001, Neural Computation.

[20]  Mark C. W. van Rossum,et al.  Stable Hebbian Learning from Spike Timing-Dependent Plasticity , 2000, The Journal of Neuroscience.

[21]  V. Han,et al.  Reversible Associative Depression and Nonassociative Potentiation at a Parallel Fiber Synapse , 2000, Neuron.

[22]  J. Magee,et al.  Somatic EPSP amplitude is independent of synapse location in hippocampal pyramidal neurons , 2000, Nature Neuroscience.

[23]  J. Leo van Hemmen,et al.  Modeling Synaptic Plasticity in Conjunction with the Timing of Pre- and Postsynaptic Action Potentials , 2000, Neural Computation.

[24]  R. Kempter,et al.  Hebbian learning and spiking neurons , 1999 .

[25]  Nicholas T. Carnevale,et al.  The NEURON Simulation Environment , 1997, Neural Computation.

[26]  V. Han,et al.  Synaptic plasticity in a cerebellum-like structure depends on temporal order , 1997, Nature.

[27]  F. J. Alvarez,et al.  Cell‐type specific organization of glycine receptor clusters in the mammalian spinal cord , 1997, The Journal of comparative neurology.

[28]  H. Markram,et al.  Redistribution of synaptic efficacy between neocortical pyramidal neurons , 1996, Nature.

[29]  S. Redman,et al.  Statistical analysis of amplitude fluctuations in EPSCs evoked in rat CA1 pyramidal neurones in vitro. , 1996, The Journal of physiology.

[30]  D. Faber,et al.  Synaptic noise and multiquantal release at dendritic synapses. , 1993, Journal of neurophysiology.

[31]  H. Korn,et al.  Size and shape of glycine receptor clusters in a central neuron exhibit a somato-dendritic gradient. , 1990, The New biologist.

[32]  J. Jack,et al.  The components of synaptic potentials evoked in cat spinal motoneurones by impulses in single group Ia afferents. , 1981, The Journal of physiology.

[33]  P. Andersen,et al.  A comparison of distal and proximal dendritic synapses on CA1 pyramids in guinea‐pig hippocampal slices in vitro , 1980, The Journal of physiology.

[34]  R. Iansek,et al.  The amplitude, time course and charge of unitary excitatory post‐synaptic potentials evoked in spinal motoneurone dendrites , 1973, The Journal of physiology.

[35]  W. Rall Branching dendritic trees and motoneuron membrane resistivity. , 1959, Experimental neurology.