Collision and Symmetry Breaking in the Transition to Strange Nonchaotic Attractors

Strange nonchaotic attractors (SNAs) can be created due to the collision of an invariant curve with itself. This novel "homoclinic" transition to SNAs occurs in quasiperiodically driven maps which derive from the discrete Schrodinger equation for a particle in a quasiperiodic potential. In the classical dynamics, there is a transition from torus attractors to SNAs, which, in the quantum system, is manifest as the localization transition. This equivalence provides new insight into a variety of properties of SNAs, including its fractal measure. Further, there is a symmetry breaking associated with the creation of SNAs which rigorously shows that the Lyapunov exponent is nonpositive. We show that these characteristics associated with the appearance of SNA are robust and occur in a large class of systems.