The Characteristic Mapping Method for the Linear Advection of Arbitrary Sets

In this paper, we present a new numerical method for advecting arbitrary sets in a vector field. The method computes a transformation of the domain instead of dealing with particular sets. We propose a way of decoupling the advection and representation steps of the computations, resulting in significant reductions in computational times over other methods while still guaranteeing accuracy. The decoupling also allows one to advect multiple sets at low computational cost, and makes the method highly parallelizable. Results are presented in two and three dimensions, and accuracy and efficiency are studied.

[1]  C. Sparrow The Fractal Geometry of Nature , 1984 .

[2]  Anup Basu,et al.  A Fully Lagrangian Advection Scheme , 2015, J. Sci. Comput..

[3]  Kenny Erleben,et al.  Multiphase Flow of Immiscible Fluids on Unstructured Moving Meshes. , 2012, IEEE transactions on visualization and computer graphics.

[4]  Lexing Ying,et al.  Fast geodesics computation with the phase flow method , 2006, J. Comput. Phys..

[5]  James A. Sethian,et al.  Analysis and applications of the Voronoi Implicit Interface Method , 2012, J. Comput. Phys..

[6]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[7]  Mohammad Mirzadeh,et al.  Parallel level-set methods on adaptive tree-based grids , 2016, J. Comput. Phys..

[8]  J. Sethian,et al.  The Voronoi Implicit Interface Method for computing multiphase physics , 2011, Proceedings of the National Academy of Sciences.

[9]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[10]  C. Rycroft,et al.  Reference map technique for finite-strain elasticity and fluid-solid interaction , 2012 .

[11]  Jean-Christophe Nave,et al.  A new method for the level set equation using a hierarchical-gradient truncation and remapping technique , 2010, Comput. Phys. Commun..

[12]  Aleksej F. Filippov,et al.  Differential Equations with Discontinuous Righthand Sides , 1988, Mathematics and Its Applications.

[13]  James A. Sethian,et al.  Level Set Methods and Fast Marching Methods: Evolving Interfaces in Computational Geometry, Fluid , 2012 .

[14]  Jörn Behrens An adaptive semi-lagrangian advection scheme and its parallelization , 1996 .

[15]  Kai Schneider,et al.  Comparison of Adaptive Multiresolution and Adaptive Mesh Refinement Applied to Simulations of the Compressible Euler Equations , 2015, SIAM J. Sci. Comput..

[16]  Peter J. Mucha,et al.  A narrow-band gradient-augmented level set method for multiphase incompressible flow , 2014, J. Comput. Phys..

[17]  Hongkai Zhao,et al.  A grid based particle method for evolution of open curves and surfaces , 2009, J. Comput. Phys..

[18]  Kai Schneider,et al.  Adaptive Gradient-Augmented Level Set Method with Multiresolution Error Estimation , 2016, J. Sci. Comput..

[19]  Ronald Fedkiw,et al.  A review of level-set methods and some recent applications , 2018, J. Comput. Phys..

[20]  B. Mandelbrot Fractal Geometry of Nature , 1984 .

[21]  Olivier D. Faugeras,et al.  Maintaining the point correspondence in the level set framework , 2006, J. Comput. Phys..

[22]  Benjamin Seibold,et al.  A gradient-augmented level set method with an optimally local, coherent advection scheme , 2009, J. Comput. Phys..

[23]  R. LeVeque High-resolution conservative algorithms for advection in incompressible flow , 1996 .

[24]  Enhua Wu,et al.  Adaptive level set for fluid surface tracking , 2015, VRST.

[25]  W. Marsden I and J , 2012 .

[26]  Ebrahim M. Kolahdouz,et al.  A Semi-implicit Gradient Augmented Level Set Method , 2012, SIAM J. Sci. Comput..

[27]  Benjamin Seibold,et al.  Jet schemes for advection problems , 2011, 1101.5374.

[28]  Benjamin Seibold,et al.  A comparative study of the efficiency of jet schemes , 2011, 1104.0542.

[29]  Ian M. Mitchell,et al.  A hybrid particle level set method for improved interface capturing , 2002 .

[30]  Arne Bøckmann,et al.  A gradient augmented level set method for unstructured grids , 2014, J. Comput. Phys..

[31]  Eitan Grinspun,et al.  Multimaterial Front Tracking , 2013, ArXiv.