Using Ontologies for Semantic Data Integration

While big data analytics is considered as one of the most important paths to competitive advantage of today’s enterprises, data scientists spend a comparatively large amount of time in the data preparation and data integration phase of a big data project. This shows that data integration is still a major challenge in IT applications. Over the past two decades, the idea of using semantics for data integration has become increasingly crucial, and has received much attention in the AI, database, web, and data mining communities. Here, we focus on a specific paradigm for semantic data integration, called Ontology-Based Data Access (OBDA). The goal of this paper is to provide an overview of OBDA, pointing out both the techniques that are at the basis of the paradigm, and the main challenges that remain to be addressed.

[1]  Maurizio Lenzerini,et al.  Developing Ontology-based Data Management for the Italian Public Debt , 2014, SEBD.

[2]  Maurizio Lenzerini,et al.  Ontology-Based Data Access with Dynamic TBoxes in DL-Lite , 2012, AAAI.

[3]  Erhard Rahm,et al.  An online bibliography on schema evolution , 2006, SGMD.

[4]  Carsten Lutz,et al.  The Combined Approach to Ontology-Based Data Access , 2011, IJCAI.

[5]  Serge Abiteboul,et al.  Complexity of answering queries using materialized views , 1998, PODS.

[6]  Diego Calvanese,et al.  Data Complexity of Query Answering in Description Logics , 2006, Description Logics.

[7]  Dean Allemang,et al.  Semantic Web for the Working Ontologist - Effective Modeling in RDFS and OWL, Second Edition , 2011 .

[8]  Diego Calvanese,et al.  Capturing model-based ontology evolution at the instance level: The case of DL-Lite , 2013, J. Comput. Syst. Sci..

[9]  Maurizio Lenzerini,et al.  On Instance-level Update and Erasure in Description Logic Ontologies , 2009, J. Log. Comput..

[10]  Diego Calvanese,et al.  The DL-Lite Family and Relations , 2009, J. Artif. Intell. Res..

[11]  Ronald Fagin,et al.  Translating Web Data , 2002, VLDB.

[12]  Diego Calvanese,et al.  Description Logic Framework for Information Integration , 1998, KR.

[13]  Michael Gruninger Ontology of the Process Specification Language , 2004 .

[14]  Vasilis Vassalos,et al.  Answering Queries Using Views , 2009, Encyclopedia of Database Systems.

[15]  Alexander Leitsch,et al.  The Resolution Calculus , 1997, Texts in Theoretical Computer Science An EATCS Series.

[16]  Diego Calvanese,et al.  Data Integration through DL-LiteA Ontologies , 2008, SDKB 2008.

[17]  Maurizio Lenzerini,et al.  A Higher-Order Semantics for Metaquerying in OWL 2 QL , 2016, KR.

[18]  Thomas Schwentick,et al.  The price of query rewriting in ontology-based data access , 2014, Artif. Intell..

[19]  Diego Calvanese,et al.  Data Integration throughDL-LiteA Ontologies , 2008, SDKB.

[20]  Domenico Lembo,et al.  Easy OWL Drawing with the Graphol Visual Ontology Language , 2016, KR.

[21]  François Goasdoué,et al.  Teaching an RDBMS about ontological constraints , 2016, Proc. VLDB Endow..

[22]  Enrico Motta,et al.  Ontology evolution: a process-centric survey , 2013, The Knowledge Engineering Review.

[23]  Diego Calvanese,et al.  Linking Data to Ontologies , 2008, J. Data Semant..

[24]  Diego Calvanese,et al.  Ontop: Answering SPARQL queries over relational databases , 2016, Semantic Web.

[25]  Diego Calvanese,et al.  Handling Inconsistencies Due to Class Disjointness in SPARQL Updates , 2016, ESWC.

[26]  Paolo Papotti,et al.  ++Spicy: an OpenSource Tool for Second-Generation Schema Mapping and Data Exchange , 2011, Proc. VLDB Endow..

[27]  Maurizio Lenzerini,et al.  Data integration: a theoretical perspective , 2002, PODS.

[28]  Diego Calvanese,et al.  Dependencies: Making Ontology Based Data Access work in practice , 2011 .

[29]  Diego Calvanese,et al.  Using OWL in Data Integration , 2009, Semantic Web Information Management.

[30]  Andrea Calì,et al.  A general datalog-based framework for tractable query answering over ontologies , 2009, SEBD.

[31]  Diego Calvanese,et al.  DL-Lite: Practical Reasoning for Rich Dls , 2004, Description Logics.

[32]  Giancarlo Guizzardi,et al.  Expressive Multi-level Modeling for the Semantic Web , 2016, SEMWEB.

[33]  Giorgos B. Stamou,et al.  Optimized Query Rewriting for OWL 2 QL , 2011, CADE.

[34]  Riccardo Rosati,et al.  Improving Query Answering over DL-Lite Ontologies , 2010, KR.

[35]  Egor V. Kostylev,et al.  Queries with negation and inequalities over lightweight ontologies , 2015, J. Web Semant..

[36]  Mark A. Musen,et al.  The protégé project: a look back and a look forward , 2015, SIGAI.

[37]  Andrea Calì,et al.  A general Datalog-based framework for tractable query answering over ontologies , 2012, J. Web Semant..

[38]  Maurizio Lenzerini,et al.  Answering Metaqueries over Hi (OWL 2 QL) Ontologies , 2016, IJCAI.

[39]  Diego Calvanese,et al.  OBDA Beyond Relational DBs: A Study for MongoDB , 2016, Description Logics.

[40]  Jeffrey D. Ullman,et al.  Information integration using logical views , 1997, Theor. Comput. Sci..

[41]  Maurizio Lenzerini,et al.  Data Quality in Ontology-based Data Access: The Case of Consistency , 2014, AAAI.

[42]  Thomas Eiter,et al.  Query Rewriting for Horn-SHIQ Plus Rules , 2012, AAAI.

[43]  Diego Calvanese,et al.  Tractable Reasoning and Efficient Query Answering in Description Logics: The DL-Lite Family , 2007, Journal of Automated Reasoning.

[44]  Maurizio Lenzerini,et al.  Optimizing query rewriting in ontology-based data access , 2013, EDBT '13.

[45]  Serge Abiteboul,et al.  Foundations of Databases , 1994 .

[46]  Domenico Lembo,et al.  Eddy: A Graphical Editor for OWL 2 Ontologies , 2016, IJCAI.

[47]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[48]  Bernardo Cuenca Grau,et al.  OWL 2 Web Ontology Language: Profiles , 2009 .

[49]  Boris Motik,et al.  Efficient Query Answering for OWL 2 , 2009, SEMWEB.