Biopsy with Thermally‐Responsive Untethered Microtools

Thermally activated, untethered microgrippers can reach narrow conduits in the body and be used to excise tissue for diagnostic analyses. As depicted in the figure, the feasibility of an in vivo biopsy of the porcine bile duct using untethered microgrippers is demonstrated.

[1]  Jeong-Hyun Cho,et al.  Self-Assembly Based on Chromium/Copper Bilayers , 2009, Journal of Microelectromechanical Systems.

[2]  Chad A Mirkin,et al.  Nanostructures in biodiagnostics. , 2005, Chemical reviews.

[3]  Shanmugam Saravanan,et al.  Valley-fold and mountain-fold in the micro-origami technique , 2003, Microelectron. J..

[4]  Robert Langer,et al.  First-in-Human Testing of a Wirelessly Controlled Drug Delivery Microchip , 2012, Science Translational Medicine.

[5]  G. Iddan,et al.  Wireless capsule endoscopy , 2003, Gut.

[6]  M. Folstein,et al.  Clinical diagnosis of Alzheimer's disease , 1984, Neurology.

[7]  D.J. Young,et al.  A Wireless and Batteryless 10-Bit Implantable Blood Pressure Sensing Microsystem With Adaptive RF Powering for Real-Time Laboratory Mice Monitoring , 2009, IEEE Journal of Solid-State Circuits.

[8]  D. Milan,et al.  A pig-human comparative RH map comprising 20 genes on pig chromosome 13q41 that harbours the ETEC F4ac receptor locus. , 2009, Journal of animal breeding and genetics = Zeitschrift fur Tierzuchtung und Zuchtungsbiologie.

[9]  Metin Sitti,et al.  A Legged Anchoring Mechanism for Capsule Endoscopes Using Micropatterned Adhesives , 2008, IEEE Transactions on Biomedical Engineering.

[10]  A. Forgione In vivo microrobots for natural orifice transluminal surgery. Current status and future perspectives. , 2009, Surgical oncology.

[11]  S. Martel,et al.  Automatic navigation of an untethered device in the artery of a living animal using a conventional clinical magnetic resonance imaging system , 2007 .

[12]  Mark Rentschler,et al.  Vision and Task Assistance Using Modular Wireless In Vivo Surgical Robots , 2009, IEEE Transactions on Biomedical Engineering.

[13]  Michael R Stratton,et al.  Genomics and the continuum of cancer care. , 2011, The New England journal of medicine.

[14]  M. A. Putyato,et al.  Free-standing and overgrown InGaAs/GaAs nanotubes, nanohelices and their arrays , 2000 .

[15]  Paolo Dario,et al.  A reconfigurable modular robotic endoluminal surgical system: vision and preliminary results , 2009, Robotica.

[16]  M. Mack,et al.  Minimally invasive and robotic surgery. , 2001, JAMA.

[17]  M. Jamal,et al.  Enzymatically triggered actuation of miniaturized tools. , 2010, Journal of the American Chemical Society.

[18]  Krzysztof K. Krawczyk,et al.  Magnetic Helical Micromachines: Fabrication, Controlled Swimming, and Cargo Transport , 2012, Advanced materials.

[19]  Vikesh K. Singh,et al.  Flexible transgastric peritoneoscopy: a novel approach to diagnostic and therapeutic interventions in the peritoneal cavity. , 2004, Gastrointestinal endoscopy.

[20]  Guozheng Yan,et al.  An active endoscopic robot based on wireless power transmission and electromagnetic localization , 2008, The international journal of medical robotics + computer assisted surgery : MRCAS.

[21]  K. Wise,et al.  A wireless microsystem for the remote sensing of pressure, temperature, and relative humidity , 2005, Journal of Microelectromechanical Systems.

[22]  Robert A Freitas,et al.  What is nanomedicine? , 2005, Disease-a-month : DM.

[23]  M. Stratton Exploring the Genomes of Cancer Cells: Progress and Promise , 2011, Science.

[24]  Richard P. Feynman There's plenty of room at the bottom [data storage] , 1992, Journal of Microelectromechanical Systems.

[25]  David H Gracias,et al.  Thin film stress driven self-folding of microstructured containers. , 2008, Small.

[26]  L. Swanstrom,et al.  Developing essential tools to enable transgastric surgery , 2008, Surgical Endoscopy.

[27]  Ninh T Nguyen,et al.  Single Laparoscopic Incision Transabdominal (SLIT) Surgery—Adjustable Gastric Banding: A Novel Minimally Invasive Surgical Approach , 2008, Obesity surgery.

[28]  Metin Sitti,et al.  Design and Rolling Locomotion of a Magnetically Actuated Soft Capsule Endoscope , 2012, IEEE Transactions on Robotics.

[29]  D. Shibata,et al.  Global gene expression profiling in Barrett's esophagus and esophageal cancer: a comparative analysis using cDNA microarrays , 2002, Oncogene.

[30]  P. Dario,et al.  Robotic versus manual control in magnetic steering of an endoscopic capsule. , 2009, Endoscopy.

[31]  Nathan A. Wood,et al.  Dexterous miniature robot for advanced minimally invasive surgery , 2010, Surgical Endoscopy.

[32]  Wei Gao,et al.  Nano/Microscale motors: biomedical opportunities and challenges. , 2012, ACS nano.

[33]  David K. Fork,et al.  Out-of-plane high-Q inductors on low-resistance silicon , 2003 .

[34]  R. Langer,et al.  Designing materials for biology and medicine , 2004, Nature.

[35]  Paolo Dario,et al.  Microrobotics for future gastrointestinal endoscopy , 2007, Minimally invasive therapy & allied technologies : MITAT : official journal of the Society for Minimally Invasive Therapy.

[36]  M. Breese,et al.  Proton beam writing , 2007 .

[37]  Ayusman Sen,et al.  Fantastic voyage: designing self-powered nanorobots. , 2012, Angewandte Chemie.

[38]  S. Gambhir,et al.  Quantum Dots for Live Cells, in Vivo Imaging, and Diagnostics , 2005, Science.

[39]  Jim McDermott,et al.  Harnessing our opportunity to make primary care sustainable. , 2011, The New England journal of medicine.

[40]  Michael J. Berry,et al.  Piezoelectric nanoribbons for monitoring cellular deformations. , 2012, Nature nanotechnology.

[41]  J. Marescaux,et al.  Minimally invasive single-site surgery for the digestive system: A technological review , 2011, Journal of minimal access surgery.

[42]  David H Gracias,et al.  Tetherless thermobiochemically actuated microgrippers , 2009, Proceedings of the National Academy of Sciences.

[43]  D. Gracias,et al.  Pick-and-place using chemically actuated microgrippers. , 2008, Journal of the American Chemical Society.

[44]  David H. Gracias,et al.  Toward a miniaturized mechanical surgeon , 2009 .

[45]  K D Wise,et al.  Microfabrication techniques for integrated sensors and microsystems. , 1991, Science.

[46]  W. Xi,et al.  Self-propelled nanotools. , 2012, ACS nano.

[47]  Henry I. Smith,et al.  Membrane folding to achieve three-dimensional nanostructures: Nanopatterned silicon nitride folded with stressed chromium hinges , 2006 .