The effects of packing structure on the effective thermal conductivity of granular media: A grain scale investigation

Structural characteristics are considered to be the dominant factors in determining the effective properties of granular media, particularly in the scope of transport phenomena. Towards improved heat management, thermal transport in granular media requires an improved fundamental understanding. In this study, the effects of packing structure on heat transfer in granular media are evaluated at macro- and grain-scales. At the grain-scale, a gas-solid coupling heat transfer model is adapted into a discrete-element-method to simulate this transport phenomenon. The numerical framework is validated by experimental data obtained using a plane source technique, and the Smoluschowski effect of the gas phase is found to be captured by this extension. By considering packings of spherical SiO2 grains with an interstitial helium phase, vibration induced ordering in granular media is studied, using the simulation methods developed here, to investigate how disorder-to-order transitions of packing structure enhance effective thermal conductivity. Grain-scale thermal transport is shown to be influenced by the local neighbourhood configuration of individual grains. The formation of an ordered packing structure enhances both global and local thermal transport. This study provides a structure approach to explain transport phenomena, which can be applied in properties modification for granular media.

[1]  A. V. Goryunov,et al.  Effective thermal conductivity of disperse materials. I. Compliance of common models with experimental data , 2013 .

[2]  A. Slavin,et al.  Theoretical model for the thermal conductivity of a packed bed of solid spheroids in the presence of a static gas, with no adjustable parameters except at low pressure and temperature , 2002 .

[3]  Yangyang He,et al.  Heat transfer characteristics of silica aerogel composite materials: Structure reconstruction and numerical modeling , 2016 .

[4]  T. Senden,et al.  Mechanical characterization of partially crystallized sphere packings. , 2014, Physical review letters.

[5]  Y. Gan,et al.  Thermal Discrete Element Analysis of EU Solid Breeder Blanket Subjected to Neutron Irradiation , 2014, 1406.4199.

[6]  P. Ramakrishna,et al.  Thermal conductivity estimation of high solid loading particulate composites: A numerical approach , 2018 .

[7]  P. G. Rousseau,et al.  A review of correlations to model the packing structure and effective thermal conductivity in packed beds of mono-sized spherical particles , 2010 .

[8]  Y. Gan,et al.  Modes of wall induced granular crystallisation in vibrational packing , 2018, Granular Matter.

[9]  Chin Tsau Hsu,et al.  A Lumped-Parameter Model for Stagnant Thermal Conductivity of Spatially Periodic Porous Media , 1995 .

[10]  A. Yu,et al.  Self-assembly of particles for densest packing by mechanical vibration. , 2006, Physical review letters.

[11]  Hajime Tanaka,et al.  The microscopic pathway to crystallization in supercooled liquids , 2011, Scientific Reports.

[12]  Fangming Jiang,et al.  Thermal safety of lithium-ion batteries with various cathode materials: A numerical study , 2016 .

[13]  R. Tye,et al.  thermal conductivity , 2019 .

[14]  R. Hill,et al.  Diffusion in sphere and spherical-cavity arrays with interacting gas and surface phases , 2017 .

[15]  V. Kumaran,et al.  Bond-orientational analysis of hard-disk and hard-sphere structures. , 2006, The Journal of chemical physics.

[16]  Runyu Yang,et al.  Discrete particle simulation of particulate systems: A review of major applications and findings , 2008 .

[17]  Runyu Yang,et al.  Role of interparticle forces in the formation of random loose packing. , 2006, Physical review letters.

[18]  Joseph J. McCarthy,et al.  Stress effects on the conductivity of particulate beds , 2002 .

[19]  Yi He,et al.  Rapid thermal conductivity measurement with a hot disk sensor: Part 1. Theoretical considerations , 2005 .

[20]  Zhaoyu Wang,et al.  Review of soil thermal conductivity and predictive models , 2017 .

[21]  Tae Sup Yun,et al.  Three-dimensional random network model for thermal conductivity in particulate materials , 2010 .

[22]  S. Gustafsson,et al.  THERMAL CONDUCTIVITY, THERMAL DIFFUSIVITY, AND SPECIFIC HEAT OF THIN SAMPLES FROM TRANSIENT MEASUREMENTS WITH HOT DISK SENSORS , 1994 .

[23]  S. K. Hsu,et al.  Kinetic Theory of Parallel Plate Heat Transfer in a Polyatomic Gas , 1972 .

[24]  M. Louge,et al.  Heat transfer enhancement in dense suspensions of agitated solids. Part I: Theory , 2008 .

[25]  Heat conduction in two and three-phase media with solid spherical particles of the same diameter , 2017 .

[26]  Y. T. Feng,et al.  Discrete thermal element modelling of heat conduction in particle systems: Basic formulations , 2008, J. Comput. Phys..

[27]  Yixiang Gan,et al.  X-ray tomography investigations of mono-sized sphere packing structures in cylindrical containers , 2017 .

[28]  Y. Gan,et al.  Discrete element method for effective thermal conductivity of packed pebbles accounting for the Smoluchowski effect , 2018 .

[29]  Yixiang Gan,et al.  Interfacial electro-mechanical behaviour at rough surfaces , 2016 .

[30]  Dorian A. H. Hanaor,et al.  Influence of gas pressure on the effective thermal conductivity of ceramic breeder pebble beds , 2017 .

[31]  Marc Kamlah,et al.  Effective thermal conductivity of advanced ceramic breeder pebble beds , 2017 .

[32]  Andrey V. Gusarov,et al.  Model of thermal conductivity in powder beds , 2009 .

[33]  M. Yovanovich,et al.  Effective thermal conductivity of rough spherical packed beds , 2006 .

[34]  Nan Gui,et al.  Effect of scale on the modeling of radiation heat transfer in packed pebble beds , 2016 .

[35]  Evangelos Tsotsas,et al.  Thermal conductivity of packed beds: A review , 1987 .

[36]  Daan Frenkel,et al.  Simulation of homogeneous crystal nucleation close to coexistence , 1996 .

[37]  P. Steinhardt,et al.  Bond-orientational order in liquids and glasses , 1983 .

[38]  G. Batchelor,et al.  Thermal or electrical conduction through a granular material , 1977, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[39]  Y. Gan,et al.  Effective thermal conductivity of a compacted pebble bed in a stagnant gaseous environment: An analytical approach together with DEM , 2018 .

[40]  G. Woan Transient phenomena , 2004 .

[41]  Majid Bahrami,et al.  A Compact Model for Spherical Rough Contacts , 2005 .

[42]  Marc Kamlah,et al.  Discrete element modelling of pebble beds: With application to uniaxial compression tests of ceramic breeder pebble beds , 2010 .

[43]  Christopher Yu Hang Chao,et al.  Thermal management of lithium ion batteries using graphene coated nickel foam saturated with phase change materials , 2018 .

[44]  Andrea J. Liu,et al.  Solids between the mechanical extremes of order and disorder , 2014, Nature Physics.

[45]  R. Hill,et al.  Sorption and diffusion of moisture in silica-polyacrylamide nanocomposite films , 2017 .

[46]  Qi‐Chang He,et al.  Numerical evaluation of the effective conductivities of composites with interfacial weak and strong discontinuities , 2015 .

[47]  Y. Feng,et al.  An accurate evaluation of geometric view factors for modelling radiative heat transfer in randomly packed beds of equally sized spheres , 2012 .

[48]  A. Yu,et al.  Effect of vibration condition and inter-particle frictions on the packing of uniform spheres , 2008 .

[49]  P. Cundall,et al.  A discrete numerical model for granular assemblies , 1979 .

[50]  C. Kloss,et al.  Models, algorithms and validation for opensource DEM and CFD-DEM , 2012 .

[51]  A. Ying,et al.  Effective Thermal Conductivity of Lithium Ceramic Pebble Beds for Fusion Blankets: A Review , 2005 .

[52]  Simona Ronchi Della Rocca,et al.  λ Δ -Models , 2004 .

[53]  Mehta,et al.  Transient phenomena, self-diffusion, and orientational effects in vibrated powders. , 1993, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[54]  Paul Zulli,et al.  Evaluation of effective thermal conductivity from the structure of a packed bed , 1999 .

[55]  Germany,et al.  A discrete model for long time sintering , 2002, cond-mat/0211280.

[56]  Chin Tsau Hsu,et al.  Modified Zehner-Schlunder models for stagnant thermal conductivity of porous media , 1994 .

[57]  Matthias Markl,et al.  Multiscale Modeling of Powder Bed–Based Additive Manufacturing , 2016 .

[58]  Robert P. Behringer,et al.  Topology of force networks in granular media under impact , 2017, 1709.01884.

[59]  B. Sammakia,et al.  An Efficient Network Model for Determining the Effective Thermal Conductivity of Particulate Thermal Interface Materials , 2008, IEEE Transactions on Components and Packaging Technologies.

[60]  James K. Carson,et al.  Thermal conductivity bounds for isotropic, porous materials , 2005 .

[61]  A. Yu,et al.  Quasi-universality in the packing of uniform spheres under gravity , 2016 .

[62]  C. Rycroft,et al.  Analysis of granular flow in a pebble-bed nuclear reactor. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[63]  P. Zehner,et al.  Wärmeleitfähigkeit von Schüttungen bei mäßigen Temperaturen , 1970 .

[64]  Mario Nicodemi,et al.  Slow relaxation and compaction of granular systems , 2005, Nature materials.

[65]  Joseph J. McCarthy,et al.  Heat conduction in granular materials , 2001 .

[66]  Tatiana Gambaryan-Roisman,et al.  Heat transfer in granular medium for application to selective laser melting: A numerical study , 2017 .

[67]  D. Kunii,et al.  Studies on effective thermal conductivities in packed beds , 1957 .

[68]  Marc Kamlah,et al.  Computer simulation of packing structure in pebble beds , 2010 .

[69]  A. Gusarov,et al.  Modeling of granular packed beds, their statistical analyses and evaluation of effective thermal conductivity , 2017 .