A novel signal diagnosis technique using pseudo complex-valued autoregressive technique

In this paper, a new method of biomedical signal classification using complex- valued pseudo autoregressive (CAR) modeling approach has been proposed. The CAR coefficients were computed from the synaptic weights and coefficients of a split weight and activation function of a feedforward multilayer complex valued neural network. The performance of the proposed technique has been evaluated using PIMA Indian diabetes dataset with different complex-valued data normalization techniques and four different values of learning rate. An accuracy value of 81.28% has been obtained using this proposed technique.

[1]  Danilo P. Mandic,et al.  A normalised complex backpropagation algorithm , 2002, 2002 IEEE International Conference on Acoustics, Speech, and Signal Processing.

[2]  Paul C. Lauterbur,et al.  Principles of magnetic resonance imaging : a signal processing perspective , 1999 .

[3]  Kemal Polat,et al.  Principles component analysis, fuzzy weighting pre-processing and artificial immune recognition system based diagnostic system for diagnosis of lung cancer , 2008, Expert Syst. Appl..

[4]  T. Adalı,et al.  Fully complex backpropagation for constant envelope signal processing , 2000, Neural Networks for Signal Processing X. Proceedings of the 2000 IEEE Signal Processing Society Workshop (Cat. No.00TH8501).

[5]  Henry Leung,et al.  The complex backpropagation algorithm , 1991, IEEE Trans. Signal Process..

[6]  D. Giddens,et al.  Modern spectral analysis techniques for blood flow velocity and spectral measurements with pulsed Doppler ultrasound , 1991, IEEE Transactions on Biomedical Engineering.

[7]  S.M. Kay,et al.  Spectrum analysis—A modern perspective , 1981, Proceedings of the IEEE.

[8]  N. Jain,et al.  Constrained Autoregressive Model for Burg Method , 2006, 2006 Annual IEEE India Conference.

[9]  Francesco Piazza,et al.  On the complex backpropagation algorithm , 1992, IEEE Trans. Signal Process..

[10]  Ramaswamy Palaniappan,et al.  Towards Optimal Model Order Selection for Autoregressive Spectral Analysis of Mental Tasks Using Genetic Algorithm , 2006 .

[11]  J. Dripps,et al.  Autoregressive spectral estimation of fetal breathing movement , 1989, IEEE Transactions on Biomedical Engineering.

[12]  P. Lauterbur,et al.  Principles of magnetic resonance imaging : a signal processing perspective , 1999 .

[13]  Kemal Polat,et al.  An expert system approach based on principal component analysis and adaptive neuro-fuzzy inference system to diagnosis of diabetes disease , 2007, Digit. Signal Process..

[14]  S. Fattah,et al.  An algorithm for the identification of autoregressive moving average systems from noisy observations , 2008, 2008 Canadian Conference on Electrical and Computer Engineering.

[15]  Nikola K. Kasabov,et al.  On-line pattern analysis by evolving self-organizing maps , 2003, Neurocomputing.

[16]  Monson H. Hayes,et al.  Statistical Digital Signal Processing and Modeling , 1996 .

[17]  Daesik Hong,et al.  Nonlinear blind equalization schemes using complex-valued multilayer feedforward neural networks , 1998, IEEE Trans. Neural Networks.

[18]  S. T. Nichols,et al.  Application of Autoregressive Moving Average Parametric Modeling in Magnetic Resonance Image Reconstruction , 1986, IEEE Transactions on Medical Imaging.

[19]  N. Obuchowski,et al.  Assessing spectral algorithms to predict atherosclerotic plaque composition with normalized and raw intravascular ultrasound data. , 2001, Ultrasound in Medicine and Biology.

[20]  Tom Fawcett,et al.  ROC Graphs: Notes and Practical Considerations for Data Mining Researchers , 2003 .

[21]  M. Ibnkahla,et al.  Vector neural networks for digital satellite communications , 1995, Proceedings IEEE International Conference on Communications ICC '95.

[22]  Fa-Long Luo,et al.  Applied neural networks for signal processing , 1997 .

[23]  Tülay Adali,et al.  Fully Complex Multi-Layer Perceptron Network for Nonlinear Signal Processing , 2002, J. VLSI Signal Process..

[24]  M. Kendall,et al.  A Study in the Analysis of Stationary Time-Series. , 1955 .

[25]  Steven Kay,et al.  Modern Spectral Estimation: Theory and Application , 1988 .

[26]  R.J. Cohen,et al.  Linear and nonlinear ARMA model parameter estimation using an artificial neural network , 1997, IEEE Transactions on Biomedical Engineering.

[27]  J. Skilling,et al.  Algorithms and Applications , 1985 .

[28]  Kazuyuki Murase,et al.  Single-layered complex-valued neural network for real-valued classification problems , 2009, Neurocomputing.

[29]  Paolo Campolucci,et al.  Complex-valued neural networks with adaptive spline activation function for digital-radio-links nonlinear equalization , 1999, IEEE Trans. Signal Process..

[30]  Francesco Piazza,et al.  Non linear satellite radio links equalized using blind neural networks , 1991, [Proceedings] ICASSP 91: 1991 International Conference on Acoustics, Speech, and Signal Processing.

[31]  Cris Koutsougeras,et al.  Complex domain backpropagation , 1992 .

[32]  Tülay Adali,et al.  Complex backpropagation neural network using elementary transcendental activation functions , 2001, 2001 IEEE International Conference on Acoustics, Speech, and Signal Processing. Proceedings (Cat. No.01CH37221).

[33]  Michael R. Smith,et al.  Comments on "Data truncation artifact reduction in MR imaging using a multilayer neural network" , 1995, IEEE Trans. Medical Imaging.

[34]  Simon Haykin,et al.  Neural Networks: A Comprehensive Foundation , 1998 .

[35]  E. Tuzcu,et al.  Coronary Plaque Classification With Intravascular Ultrasound Radiofrequency Data Analysis , 2002, Circulation.

[36]  Gérard Blanchet,et al.  Digital signal and image processing using MATLAB , 2006 .

[37]  Raj Mittra,et al.  FDTD signal extrapolation using the forward-backward autoregressive (AR) model , 1994, IEEE Microwave and Guided Wave Letters.

[38]  D. Ku,et al.  Accuracy of velocity and shear rate measurements using pulsed Doppler ultrasound: a comparison of signal analysis techniques. , 1991, Ultrasound in medicine & biology.

[39]  Akira Hirose,et al.  Complex-valued neural networks: The merits and their origins , 2009, 2009 International Joint Conference on Neural Networks.

[40]  A. A. Shafie,et al.  Application of modeling techniques to diabetes diagnosis , 2010, 2010 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES).

[41]  M P Moore,et al.  Classification of arterial plaque by spectral analysis of in vitro radio frequency intravascular ultrasound data. , 2000, Ultrasound in medicine & biology.

[42]  Gail A. Carpenter,et al.  ARTMAP-IC and medical diagnosis: Instance counting and inconsistent cases , 1998, Neural Networks.

[43]  U.C. Niranjan,et al.  AR modeling of heart rate signals , 2004, 2004 IEEE Region 10 Conference TENCON 2004..

[44]  D. Calvetti,et al.  Regularized autoregressive analysis of intravascular ultrasound backscatter: improvement in spatial accuracy of tissue maps , 2004, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[45]  Fevzullah Temurtas,et al.  A comparative study on diabetes disease diagnosis using neural networks , 2009, Expert Syst. Appl..

[46]  Jenq-Neng Hwang,et al.  Introduction to Neural Networks for Signal Processing , 2001, Handbook of Neural Network Signal Processing.

[47]  D. J. Marsh,et al.  Robust Nonlinear Autoregressive Moving Average Model Parameter Estimation Using Stochastic Recurrent Artificial Neural Networks , 1999, Annals of Biomedical Engineering.

[48]  L. Marple Resolution of conventional Fourier, autoregressive, and special ARMA methods of spectrum analysis , 1977 .

[49]  Akira Hirose,et al.  Complex-Valued Neural Networks , 2006, Studies in Computational Intelligence.

[50]  Y. Hui,et al.  MRI reconstruction from truncated data using a complex domain backpropagation neural network , 1995, IEEE Pacific Rim Conference on Communications, Computers, and Signal Processing. Proceedings.

[51]  Piet M. T. Broersen,et al.  Modified Durbin Method for Accurate Estimation of Moving-Average Models , 2009, IEEE Transactions on Instrumentation and Measurement.

[52]  Ki H. Chon,et al.  A New Algorithm for Autoregression Moving Average Model Parameter Estimation Using Group Method of Data Handling , 2004, Annals of Biomedical Engineering.

[53]  Yan Hui,et al.  A data extrapolation algorithm using a complex domain neural network , 1997 .

[54]  Akira Hirose Complex-Valued Neural Networks: Theories and Applications (Series on Innovative Intelligence, 5) , 2004 .

[55]  S. Ray,et al.  Representation of complex-valued neural networks: a real-valued approach , 2005, Proceedings of 2005 International Conference on Intelligent Sensing and Information Processing, 2005..

[56]  Ki H. Chon,et al.  A new algorithm for ARMA model parameter estimation using group method of data handling , 2000, Proceedings of the IEEE 26th Annual Northeast Bioengineering Conference (Cat. No.00CH37114).

[57]  Kemal Polat,et al.  A cascade learning system for classification of diabetes disease: Generalized Discriminant Analysis and Least Square Support Vector Machine , 2008, Expert Syst. Appl..

[58]  Amir Akramin Shafie,et al.  Determination of Complex-Valued Parametric Model Coefficients Using Artificial Neural Network Technique , 2010, Adv. Artif. Neural Syst..

[59]  W. J. Kim,et al.  Application of neural networks to signal prediction in nuclear power plant , 1993 .

[60]  Eugene N. Bruce,et al.  Biomedical Signal Processing and Signal Modeling , 2000 .

[61]  Bernard Widrow,et al.  Adaptive Signal Processing , 1985 .

[62]  T. Yıldırım,et al.  MEDICAL DIAGNOSIS ON PIMA INDIAN DIABETES USING GENERAL REGRESSION NEURAL NETWORKS , 2003 .

[63]  W. M. Carey,et al.  Digital spectral analysis: with applications , 1986 .

[64]  M P Moore,et al.  Characterisation of coronary atherosclerotic morphology by spectral analysis of radiofrequency signal: in vitro intravascular ultrasound study with histological and radiological validation , 1998, Heart.

[65]  Aiguo Song,et al.  Algorithm of Imagined Left-Right Hand Movement Classification Based on Wavelet Transform and AR Parameter Model , 2007, 2007 1st International Conference on Bioinformatics and Biomedical Engineering.

[66]  S. Sengupta Introduction to Applied Statistical Signal Analysis , 1991 .

[67]  D. B. Preston Spectral Analysis and Time Series , 1983 .

[68]  D. Mitchell Wilkes,et al.  ARMA model order estimation based on the eigenvalues of the covariance matrix , 1993, IEEE Trans. Signal Process..

[69]  Yüksel Özbay,et al.  A New Method for Diagnosis of Cirrhosis Disease: Complex-valued Artificial Neural Network , 2008, Journal of Medical Systems.