Dynamics of two classes of Lorenz-type chaotic systems

In this article, the dynamical behaviors of two classes of chaotic systems are considered based on generalized Lyapunov function theorem with integral inequalities. Explicit estimations of the ultimate bounds are derived. The results presented in this article contain the existing results as special cases. Computer simulation results show that the proposed method is effective. © 2014 Wiley Periodicals, Inc. Complexity 21: 363-369, 2015

[1]  Nikolay V. Kuznetsov,et al.  Hidden attractors in Dynamical Systems. From Hidden oscillations in Hilbert-Kolmogorov, Aizerman, and Kalman Problems to Hidden Chaotic Attractor in Chua Circuits , 2013, Int. J. Bifurc. Chaos.

[2]  Xing-yuan Wang,et al.  Synchronization of the fractional order hyperchaos Lorenz systems with activation feedback control , 2009 .

[3]  Xie Shengli,et al.  Globally exponentially attractive sets of the family of Lorenz systems , 2008 .

[4]  Guanrong Chen,et al.  YET ANOTHER CHAOTIC ATTRACTOR , 1999 .

[5]  Gennady A. Leonov,et al.  General existence conditions of homoclinic trajectories in dissipative systems. Lorenz, Shimizu–Morioka, Lu and Chen systems , 2012 .

[6]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[7]  Fuchen Zhang,et al.  Bounds for a new chaotic system and its application in chaos synchronization , 2011 .

[8]  H. Nijmeijer,et al.  An ultimate bound on the trajectories of the Lorenz system and its applications , 2003 .

[9]  F Zhang The Dynamical Analysis of a Disk Dynamo System and Its Application in Chaos Synchronization , 2013 .

[10]  Xingyuan Wang,et al.  Asynchronous anti-noise hyper chaotic secure communication system based on dynamic delay and state variables switching , 2011 .

[11]  Gennady A. Leonov,et al.  Bounds for attractors and the existence of homoclinic orbits in the lorenz system , 2001 .

[12]  G. Leonov,et al.  On stability by the first approximation for discrete systems , 2005, Proceedings. 2005 International Conference Physics and Control, 2005..

[13]  Xing-yuan Wang,et al.  Projective synchronization of fractional order chaotic system based on linear separation , 2008 .

[14]  Nikolay V. Kuznetsov,et al.  Numerical justification of Leonov conjecture on Lyapunov dimension of Rossler attractor , 2014, Commun. Nonlinear Sci. Numer. Simul..

[15]  Nikolay V. Kuznetsov,et al.  Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor , 2014 .

[16]  Manuel Merino,et al.  Chen's attractor exists if Lorenz repulsor exists: the Chen system is a special case of the Lorenz system. , 2013, Chaos.

[17]  G. Leonov,et al.  Localization of hidden Chuaʼs attractors , 2011 .

[18]  Mohammad Pourmahmood Aghababa,et al.  Chaotic fractional-order model for muscular blood vessel and its control via fractional control scheme , 2014, Complex..

[19]  Gennady A. Leonov,et al.  Lyapunov's direct method in the estimation of the Hausdorff dimension of attractors , 1992 .

[20]  Fuchen Zhang,et al.  Boundedness solutions of the complex Lorenz chaotic system , 2014, Appl. Math. Comput..

[21]  Long Huang,et al.  Parameters estimation, mixed synchronization, and antisynchronization in chaotic systems , 2014, Complex..

[22]  Jinhu Lu,et al.  A New Chaotic Attractor Coined , 2002, Int. J. Bifurc. Chaos.

[23]  Da Lin,et al.  New estimate the bounds for the generalized Lorenz system , 2015 .

[24]  Nikolay V. Kuznetsov,et al.  Algorithms for finding hidden oscillations in nonlinear systems. The Aizerman and Kalman conjectures and Chua’s circuits , 2011 .

[25]  Da Lin,et al.  Global attractive sets of a novel bounded chaotic system , 2014, Neural Computing and Applications.

[26]  Alejandro J. Rodríguez-Luis,et al.  The Lü system is a particular case of the Lorenz system , 2013 .

[27]  Shihua Chen,et al.  Adaptive control for anti-synchronization of Chua's chaotic system , 2005 .

[28]  Chunlai Mu,et al.  On the Boundness of Some solutions of the Lü System , 2012, Int. J. Bifurc. Chaos.

[29]  Guanrong Chen,et al.  THE CHEN SYSTEM REVISITED , 2013 .

[30]  Qigui Yang,et al.  The Nonequivalence and Dimension Formula for attractors of Lorenz-Type Systems , 2013, Int. J. Bifurc. Chaos.

[31]  Da Lin,et al.  The dynamical analysis of a new chaotic system and simulation , 2014 .

[32]  Ayub Khan,et al.  Synchronization of circular restricted three body problem with lorenz hyper chaotic system using a robust adaptive sliding mode controller , 2013, Complex..

[33]  Jinhu Lu,et al.  Ultimate Bound Estimation of a Class of High Dimensional Quadratic Autonomous Dynamical Systems , 2011, Int. J. Bifurc. Chaos.

[34]  G. Leonov,et al.  Attraktorlokalisierung des Lorenz-Systems , 1987 .

[35]  Fuchen Zhang,et al.  Estimating the ultimate bound and positively invariant set for a synchronous motor and its application in chaos synchronization , 2011 .

[36]  G. Leonov,et al.  Frequency-Domain Methods for Nonlinear Analysis: Theory and Applications , 1996 .

[37]  Tao Fan,et al.  Robust decentralized adaptive synchronization of general complex networks with coupling delayed and uncertainties , 2014, Complex..