Experimental and diagnostic protocol for the physical component of the CMIP6 Ocean Model Intercomparison Project (OMIP)

The Ocean Model Intercomparison Project (OMIP) aims to provide a framework for evaluating, understanding, and improving the ocean and sea-ice components of global climate and earth system models contributing to the Coupled Model Intercomparison Project Phase 6 (CMIP6). OMIP addresses these aims in two complementary manners: (A) by providing an experimental protocol for global ocean/sea-ice models run with a prescribed atmospheric forcing, (B) by providing a protocol for ocean diagnostics to be saved as part of CMIP6. We focus here on the physical component of OMIP, with a companion paper (Orr et al., 2016) offering details for the inert chemistry and interactive biogeochemistry. The physical portion of the OMIP experimental protocol follows that of the interannual Coordinated Ocean-ice Reference Experiments (CORE-II). Since 2009, CORE-I (Normal Year Forcing) and CORE-II have become the standard method to evaluate global ocean/sea-ice simulations and to examine mechanisms for forced ocean climate variability. The OMIP diagnostic protocol is relevant for any ocean model component of CMIP6, including the DECK (Diagnostic, Evaluation and Characterization of Klima experiments), historical simulations, FAFMIP (Flux Anomaly Forced MIP), C4MIP (Coupled Carbon Cycle Climate MIP), DAMIP (Detection and Attribution MIP), DCPP (Decadal Climate Prediction Project), ScenarioMIP (Scenario MIP), as well as the ocean-sea ice OMIP simulations. The bulk of this paper offers scientific rationale for saving these diagnostics.

[1]  B. Samuels,et al.  North and equatorial Pacific Ocean circulation in the CORE-II hindcast simulations , 2016 .

[2]  G. Danabasoglu,et al.  OMIP biogeochemical protocols for CMIP6 , 2016 .

[3]  The Decadal Climate Prediction Project , 2016 .

[4]  Martin Jung,et al.  The C4MIP experimental protocol for CMIP6 , 2016 .

[5]  Craig M. Lee,et al.  An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part I: Sea ice and solid freshwater , 2016 .

[6]  Tong Lee,et al.  Keeping the lights on for global ocean salinity observation , 2016 .

[7]  A. Sterl,et al.  Fifteen years of ocean observations with the global Argo array , 2016 .

[8]  James Hansen,et al.  An imperative to monitor Earth's energy imbalance , 2016 .

[9]  Gabriel A. Vecchi,et al.  Enhanced warming of the Northwest Atlantic Ocean under climate change , 2016 .

[10]  Sergey Danilov,et al.  An assessment of the Arctic Ocean in a suite of interannual CORE-II simulations. Part II: Liquid freshwater , 2016 .

[11]  Veronika Eyring,et al.  Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization , 2015 .

[12]  Rong Zhang Atlantic Meridional Overturning Circulation and Climate , 2015 .

[13]  C. Wunsch,et al.  ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation , 2015 .

[14]  B. Samuels,et al.  An assessment of Antarctic Circumpolar Current and Southern Ocean meridional overturning circulation during 1958–2007 in a suite of interannual CORE-II simulations , 2015 .

[15]  F. Roquet,et al.  Accurate polynomial expressions for the density and specific volume of seawater using the TEOS-10 standard , 2015 .

[16]  Jonathan M. Gregory,et al.  A process-based analysis of ocean heat uptake in an AOGCM with an eddy-permitting ocean component , 2015, Climate Dynamics.

[17]  Dean Roemmich,et al.  Unabated planetary warming and its ocean structure since 2006 , 2015 .

[18]  Todd D. Ringler,et al.  Evaluation of the arbitrary Lagrangian–Eulerian vertical coordinate method in the MPAS-Ocean model , 2015 .

[19]  F. Joos,et al.  Projected pH reductions by 2100 might put deep North Atlantic biodiversity at risk , 2014 .

[20]  K. Taylor,et al.  Quantifying underestimates of long-term upper-ocean warming , 2014 .

[21]  Robert Marsh,et al.  NEMO–ICB (v1.0): interactive icebergs in the NEMO ocean model globally configured at eddy-permitting resolution , 2014 .

[22]  B. Samuels,et al.  An assessment of global and regional sea level for years 1993-2007 in a suite of interannual CORE-II simulations , 2014 .

[23]  D. McNeall,et al.  Is the 2004–2012 reduction of the Atlantic meridional overturning circulation significant? , 2014 .

[24]  Robert Marsh,et al.  Salinity changes in the World Ocean since 1950 in relation to changing surface freshwater fluxes , 2014, Climate Dynamics.

[25]  B. Samuels,et al.  The Deep Ocean Buoyancy Budget and Its Temporal Variability , 2014 .

[26]  Patrick Heimbach,et al.  North Atlantic simulations in Coordinated Ocean-ice Reference Experiments phase II (CORE-II). Part I: Mean states , 2014 .

[27]  C. D. Roberts,et al.  A Multimodel Study of Sea Surface Temperature and Subsurface Density Fingerprints of the Atlantic Meridional Overturning Circulation , 2013 .

[28]  A. Hogg,et al.  Southern Ocean Circulation and Eddy Compensation in CMIP5 Models , 2013 .

[29]  A. Biastoch,et al.  Spurious AMOC trends in global ocean sea-ice models related to subarctic freshwater forcing , 2013 .

[30]  Philip W. Jones,et al.  A multi-resolution approach to global ocean modeling , 2013 .

[31]  Sergey Danilov,et al.  Ocean modeling on unstructured meshes , 2013 .

[32]  J. Gregory,et al.  Twentieth-century global-mean sea-level rise: is the whole greater than the sum of the parts? , 2013 .

[33]  Reto Knutti,et al.  Energy budget constraints on climate response , 2013 .

[34]  B. Fox‐Kemper,et al.  Eddy parameterization challenge suite I: Eady spindown , 2013 .

[35]  J. Sarmiento,et al.  Shrinking of fishes exacerbates impacts of global ocean changes on marine ecosystems , 2013 .

[36]  T. Boyer,et al.  Long-term Salinity Changes and Implications for the Global Water Cycle , 2013 .

[37]  C. Domingues,et al.  Sea-level and ocean heat-content change , 2013 .

[38]  Thomas J. Weingartner,et al.  Observed increases in Bering Strait oceanic fluxes from the Pacific to the Arctic from 2001 to 2011 and their impacts on the Arctic Ocean water column , 2012 .

[39]  D. Quadfasel,et al.  Variability of the Denmark Strait overflow: Moored time series from 1996–2011 , 2012 .

[40]  S. Griffies,et al.  A dynamic, embedded Lagrangian model for ocean climate models, Part II: Idealised overflow tests , 2012 .

[41]  J. Yin Century to multi‐century sea level rise projections from CMIP5 models , 2012 .

[42]  J. Gregory,et al.  Ocean heat uptake and its consequences for the magnitude of sea level rise and climate change , 2012 .

[43]  Alicia R. Karspeck,et al.  A decadal prediction case study: Late twentieth-century North Atlantic Ocean heat content , 2012 .

[44]  Richard J. Greatbatch,et al.  Physical processes that impact the evolution of global mean sea level in ocean climate models , 2012 .

[45]  S. Wijffels,et al.  Ocean Salinities Reveal Strong Global Water Cycle Intensification During 1950 to 2000 , 2012, Science.

[46]  T. Rossby,et al.  Direct measurement of volume flux in the Faroe‐Shetland Channel and over the Iceland‐Faroe Ridge , 2012 .

[47]  G. Reverdin,et al.  Near-Surface Salinity as Nature’s Rain Gauge to Detect Human Influence on the Tropical Water Cycle , 2012 .

[48]  Janet Sprintall,et al.  SUSTAINED MONITORING OF THE SOUTHERN OCEAN AT DRAKE PASSAGE: PAST ACHIEVEMENTS AND FUTURE PRIORITIES , 2011 .

[49]  J. Gregory,et al.  Revisiting the Earth's sea‐level and energy budgets from 1961 to 2008 , 2011, Geophysical Research Letters.

[50]  Todd D. Ringler,et al.  Momentum, Vorticity and Transport: Considerations in the Design of a Finite-Volume Dynamical Core , 2011 .

[51]  Gregory C. Johnson,et al.  Warming of Global Abyssal and Deep Southern Ocean Waters between the 1990s and 2000s: Contributions to Global Heat and Sea Level Rise Budgets* , 2010 .

[52]  Gokhan Danabasoglu,et al.  Climate impacts of parameterized Nordic Sea overflows , 2010 .

[53]  A. Gordon,et al.  The Indonesian throughflow during 2004–2006 as observed by the INSTANT program , 2010 .

[54]  Ø. Skagseth,et al.  Heat in the Barents Sea: transport, storage, and surface fluxes , 2010 .

[55]  Stephen M. Griffies,et al.  Evaluating the uncertainty induced by the virtual salt flux assumption in climate simulations and future projections , 2010 .

[56]  A. Adcroft,et al.  Parameterizing the fresh-water flux from land ice to ocean with interactive icebergs in a coupled climate model , 2010 .

[57]  A. Adcroft,et al.  Parameterization of ocean eddies: Potential vorticity mixing, energetics and Arnold’s first stability theorem , 2010 .

[58]  Stephen M. Griffies,et al.  A boundary-value problem for the parameterized mesoscale eddy transport , 2010 .

[59]  T. Suga,et al.  Global surface layer salinity change detected by Argo and its implication for hydrological cycle intensification , 2009 .

[60]  Stephen G. Yeager,et al.  The global climatology of an interannually varying air–sea flux data set , 2009 .

[61]  Riccardo Farneti,et al.  An Intermediate Complexity Climate Model (ICCMp1) based on the GFDL flexible modelling system , 2009 .

[62]  Frank O. Bryan,et al.  Coordinated Ocean-ice Reference Experiments (COREs) , 2009 .

[63]  T. Fichefet,et al.  The effect of dynamic-thermodynamic icebergs on the Southern Ocean climate in a three-dimensional model , 2009 .

[64]  Kelvin J. Richards,et al.  Energetics of the Global Ocean: The Role of Layer-Thickness Form Drag , 2008 .

[65]  R. Hallberg,et al.  A Parameterization of Shear-Driven Turbulence for Ocean Climate Models , 2008 .

[66]  C. Eden,et al.  Towards a mesoscale eddy closure , 2008 .

[67]  Sergey Danilov,et al.  On computing transports in finite-element models , 2008 .

[68]  Hiroyasu Hasumi,et al.  Ocean modeling in an eddying regime , 2008 .

[69]  John Marshall,et al.  Sea ice–ocean coupling using a rescaled vertical coordinate z* , 2008 .

[70]  Alistair Adcroft,et al.  A finite volume discretization of the pressure gradient force using analytic integration , 2008 .

[71]  W. Johns,et al.  Volume Transport and Variability at Windward Passage , 2007 .

[72]  Baylor Fox-Kemper,et al.  Parameterization of Mixed Layer Eddies. I: Theory and Diagnosis , 2007 .

[73]  J. Toggweiler,et al.  The Southern Hemisphere Westerlies in a Warming World: Propping Open the Door to the Deep Ocean , 2006 .

[74]  A. Gnanadesikan,et al.  How does ocean ventilation change under global warming , 2006 .

[75]  A. Köhl,et al.  Ocean mixed layer depth: A subsurface proxy of ocean‐atmosphere variability , 2006 .

[76]  S. Klein,et al.  GFDL's CM2 Global Coupled Climate Models. Part I: Formulation and Simulation Characteristics , 2006 .

[77]  G. Danabasoglu,et al.  Changes in ocean ventilation during the 21st Century in the CCSM3 , 2006 .

[78]  Rüdiger Gerdes,et al.  Formulation of an ocean model for global climate simulations , 2005 .

[79]  B. Arbic Atmospheric forcing of the oceanic semidiurnal tide , 2005 .

[80]  T. McDougall,et al.  The material derivative of neutral density , 2005 .

[81]  Daniele Iudicone,et al.  Mixed layer depth over the global ocean: An examination of profile data and a profile-based climatology , 2004 .

[82]  M. England,et al.  Evaluation of Interior Circulation in a High-Resolution Global Ocean Model. Part I: Deep and Bottom Waters , 2004 .

[83]  Alistair Adcroft,et al.  Atmosphere–Ocean Modeling Exploiting Fluid Isomorphisms , 2004 .

[84]  A. Huerta,et al.  Arbitrary Lagrangian–Eulerian Methods , 2004 .

[85]  Temperature Advection: Internal versus External Processes , 2004 .

[86]  Jonathan M. Gregory,et al.  Freshwater transports in HadCM3 , 2003 .

[87]  T. McDougall Potential Enthalpy: A Conservative Oceanic Variable for Evaluating Heat Content and Heat Fluxes , 2003 .

[88]  W. Kessler,et al.  The Pacific Cold Tongue: A Pathway for Interhemispheric Exchange* , 2003 .

[89]  A. Weaver,et al.  Tidally driven mixing in a numerical model of the ocean general circulation , 2003 .

[90]  James C. McWilliams,et al.  Anisotropic horizontal viscosity for ocean models , 2003 .

[91]  Alistair Adcroft,et al.  How Sensitive are Coarse General Circulation Models to Fundamental Approximations in the Equations of Motion , 2003 .

[92]  Kevin E. Trenberth,et al.  Estimates of Freshwater Discharge from Continents: Latitudinal and Seasonal Variations , 2002 .

[93]  Yann Kerr,et al.  Measuring Ocean Salinity with ESA’s SMOS Mission – Advancing the Science , 2002 .

[94]  S. Levitus,et al.  World ocean atlas 2013. Volume 1, Temperature , 2002 .

[95]  Timothy P. Boyer,et al.  World ocean atlas 2013. Volume 2, Salinity , 2002 .

[96]  R. Stouffer,et al.  Comparison of Results from Several Aogcms for Global and Regional Sea-level Change 1900±2100 , 2000 .

[97]  Molly O. Baringer,et al.  Sixteen years of Florida Current Transport at 27° N , 2001 .

[98]  S. Griffies,et al.  Tracer Conservation with an Explicit Free Surface Method for z-Coordinate Ocean Models , 2001 .

[99]  A. Craig,et al.  Factors that affect the amplitude of El Nino in global coupled climate models , 2001 .

[100]  Zhang Xuehong,et al.  An oceanic general circulation model in pressure coordinates , 2001 .

[101]  Harry L. Bryden,et al.  Estimation of the transports through the Strait of Gibraltar , 2000 .

[102]  Gurvan Madec,et al.  Salt conservation, free surface, and varying levels: A new formulation for ocean general circulation models , 2000 .

[103]  J. Gregory Vertical heat transports in the ocean and their effect on time-dependent climate change , 2000 .

[104]  John F. B. Mitchell,et al.  The simulation of SST, sea ice extents and ocean heat transports in a version of the Hadley Centre coupled model without flux adjustments , 2000 .

[105]  H. Hasumi,et al.  Developments in ocean climate modelling , 2000 .

[106]  R. Ponte A preliminary model study of the large‐scale seasonal cycle in bottom pressure over the global ocean , 1999 .

[107]  Stephen M. Griffies,et al.  The Gent–McWilliams Skew Flux , 1998 .

[108]  A. Adcroft,et al.  Representation of Topography by Shaved Cells in a Height Coordinate Ocean Model , 1997 .

[109]  R. Döscher,et al.  A Method for Improved Representation of Dense Water Spreading over Topography in Geopotential-Coordinate Models , 1997 .

[110]  C. Wunsch,et al.  Atmospheric loading and the oceanic “inverted barometer” effect , 1997 .

[111]  Anthony Rosati,et al.  The sea surface pressure formulation of rigid lid models. Implications for altimetric data assimilation studies , 1995 .

[112]  W. Large,et al.  Oceanic vertical mixing: a review and a model with a nonlocal boundary layer parameterization , 1994 .

[113]  R. Greatbatch A note on the representation of steric sea level in models that conserve volume rather than mass , 1994 .

[114]  J. Dukowicz,et al.  Implicit free‐surface method for the Bryan‐Cox‐Semtner ocean model , 1994 .

[115]  R. Huang,et al.  Real Freshwater Flux as a Natural Boundary Condition for the Salinity Balance and Thermohaline Circulation Forced by Evaporation and Precipitation , 1993 .

[116]  R. Schmitt,et al.  The Goldsbrough–Stommel Circulation of the World Oceans , 1993 .

[117]  R. Sausen,et al.  Coupled ocean-atmosphere models with flux correction , 1988 .

[118]  The geostrophic balance of the Pacific Equatorial Undercurrent , 1984 .

[119]  M. Cox A primitive equation, 3-dimensional model of the ocean , 1984 .

[120]  S. Levitus Climatological Atlas of the World Ocean , 1982 .

[121]  R. Pacanowski,et al.  Parameterization of Vertical Mixing in Numerical Models of Tropical Oceans , 1981 .

[122]  E. L. Lewis,et al.  The practical salinity scale 1978: conversion of existing data , 1981 .

[123]  K. Bryan,et al.  A water mass model of the world ocean circulation , 1979 .

[124]  H. Stommel A survey of ocean current theory , 1957 .