Quincunx fundamental refinable functions and quincunx biorthogonal wavelets

We analyze the approximation and smoothness properties of quincunx fundamental refinable functions. In particular, we provide a general way for the construction of quincunx interpolatory refinement masks associated with the quincunx lattice in R2. Their corresponding quincunx fundamental refinable functions attain the optimal approximation order and smoothness order. In addition, these examples are minimally supported with symmetry. For two special families of such quincunx interpolatory masks, we prove that their symbols are nonnegative. Finally, a general way of constructing quincunx biorthogonal wavelets is presented. Several examples of quincunx interpolatory masks and quincunx biorthogonal wavelets are explicitly computed.

[1]  Serge Dubuc,et al.  Multidimensional Iterative Interpolation , 1991, Canadian Journal of Mathematics.

[2]  Gilles Deslauriers,et al.  Symmetric iterative interpolation processes , 1989 .

[3]  N. Dyn,et al.  A butterfly subdivision scheme for surface interpolation with tension control , 1990, TOGS.

[4]  Bin Han,et al.  Analysis and Construction of Optimal Multivariate Biorthogonal Wavelets with Compact Support , 1999, SIAM J. Math. Anal..

[5]  Rong-Qing Jia,et al.  Approximation properties of multivariate wavelets , 1998, Math. Comput..

[6]  R. Jia Characterization of Smoothness of Multivariate Refinable Functions in Sobolev Spaces , 1999 .

[7]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[8]  I. Daubechies,et al.  Biorthogonal bases of compactly supported wavelets , 1992 .

[9]  R. Jia,et al.  Optimal Interpolatory Subdivision Schemes in Multidimensional Spaces , 1998 .

[10]  W. Sweldens The Lifting Scheme: A Custom - Design Construction of Biorthogonal Wavelets "Industrial Mathematics , 1996 .

[11]  Charles A. Micchelli,et al.  Interpolatory Subdivision Schemes and Wavelets , 1996 .

[12]  Rong-Qing Jia,et al.  Spectral properties of the transition operator associated to a multivariate refinement equation , 1999 .

[13]  Zuowei Shen,et al.  Multivariate Compactly Supported Fundamental Refinable Functions, Duals, and Biorthogonal Wavelets , 1999 .

[14]  R. Jia,et al.  Multivariate refinement equations and convergence of subdivision schemes , 1998 .

[15]  Bin Han,et al.  Construction of multivariate biorthogonal wavelets with arbitrary vanishing moments , 2000, Adv. Comput. Math..

[16]  D. Levin,et al.  Interpolating Subdivision Schemes for the Generation of Curves and Surfaces , 1990 .

[17]  Serge Dubuc,et al.  Continuous and differentiable multidimensional iterative interpolation , 1993 .

[18]  Y. Meyer Wavelets and Operators , 1993 .

[19]  Ingrid Daubechies,et al.  Ten Lectures on Wavelets , 1992 .

[20]  B. Han On Dual Wavelet Tight Frames , 1995 .

[21]  C. Chui,et al.  Compactly supported box-spline wavelets , 1992 .

[22]  Jelena Kovacevic,et al.  Nonseparable multidimensional perfect reconstruction filter banks and wavelet bases for Rn , 1992, IEEE Trans. Inf. Theory.

[23]  Lars F. Villemoes Continuity of Nonseparable Quincunx Wavelets , 1994 .

[24]  C. Micchelli,et al.  Stationary Subdivision , 1991 .

[25]  Zuowei Shen,et al.  Multidimensional Interpolatory Subdivision Schemes , 1997 .

[26]  C. Micchelli,et al.  On linear independence for integer translates of a finite number of functions , 1993, Proceedings of the Edinburgh Mathematical Society.

[27]  I. Daubechies,et al.  Non-separable bidimensional wavelets bases. , 1993 .