Multiobjective Mathematical Programming with Inexact Data

The our purpose is to present two approaches for the inexact multiobjective programming with inexactness in the criteria, which correspond to the conservative and nonconservative ways for mathematical programming with set coefficients.

[1]  Benjamin Lev,et al.  Conservative linear programming with mixed multiple objectives , 1977 .

[2]  Allen L. Soyster,et al.  Technical Note - Convex Programming with Set-Inclusive Constraints and Applications to Inexact Linear Programming , 1973, Oper. Res..

[3]  Jean-Charles Pomerol Technical Note - Constraint Qualifications for Inexact Linear Programs , 1979, Oper. Res..

[4]  Jonathan F. Bard,et al.  Objective function bounds for the inexact linear programming problem with generalized cost coefficients , 1985, Comput. Oper. Res..

[5]  H. Zimmermann Fuzzy programming and linear programming with several objective functions , 1978 .

[6]  J. Ch. Pomerol Constraint Qualifications for Inexact Linear Programs , 1979 .

[7]  A. L. Soyster,et al.  Inexact linear programming with generalized resource sets , 1979 .

[8]  Jiří Rohn,et al.  DUALITY IN INTERVAL LINEAR PROGRAMMING , 1980 .

[9]  Floyd J. Gould Proximate linear programming: A variable extreme point method , 1972, Math. Program..

[10]  Ralph E. Steuer,et al.  Goal programming with linear fractional criteria , 1981 .

[11]  George B. Dantzig,et al.  Linear programming and extensions , 1965 .

[12]  Ştefan Ţigan Sur une méthode pour la résolution d'un problème d'optimisation fractionnaire par segments , 1975 .

[13]  G. Bitran Linear Multiple Objective Problems with Interval Coefficients , 1980 .

[15]  C. Singh Convex programming with set-inclusive constraints and its applications to generalized linear and fractional programming , 1982 .

[16]  Vinod Lyall Duality Theory in Inexact Multiobjective Programming , 1988 .

[17]  James E. Falk Technical Note - Exact Solutions of Inexact Linear Programs , 1976, Oper. Res..

[18]  David J. Thuente Technical Note - Duality Theory for Generalized Linear Programs with Computational Methods , 1980, Oper. Res..

[19]  H. P. Benson,et al.  The Vector Maximization Problem: Proper Efficiency and Stability , 1977 .

[20]  Stefan Tigan,et al.  A stochastic approach to some linear fractional goal programming problems , 1988, Kybernetika.

[21]  A. L. Soyster,et al.  Technical Note - A Duality Theory for Convex Programming with Set-Inclusive Constraints , 1974, Oper. Res..

[22]  B. Craven,et al.  Nonlinear fractional programming , 1975, Bulletin of the Australian Mathematical Society.

[23]  F Luban,et al.  On some optimization problems under uncertainty , 1986 .

[24]  R N Kaul,et al.  Duality in inexact fractional programming with set-inclusive constraints , 1986 .

[25]  A. Charnes,et al.  Goal programming and multiple objective optimizations: Part 1 , 1977 .

[26]  P. Hansen,et al.  Essays and surveys on multiple criteria decision making : proceedings of the Fifth International Conference on Multiple Criteria Decision Making, Mons, Belgium, August 9-13, 1982 , 1983 .

[27]  M. K. Luhandjula Fuzzy approaches for multiple objective linear fractional optimization , 1984 .