A unified Eulerian framework for multimaterial continuum mechanics

[1]  J. Frankel Kinetic theory of liquids , 1946 .

[2]  H. S. Green,et al.  A Kinetic Theory of Liquids , 1947, Nature.

[3]  R. Stephenson A and V , 1962, The British journal of ophthalmology.

[4]  Tai-Ping Liu,et al.  The Riemann problem for general systems of conservation laws , 1975 .

[5]  C. W. Hirt,et al.  SOLA-VOF: a solution algorithm for transient fluid flow with multiple free boundaries , 1980 .

[6]  C. M. Tarver,et al.  Phenomenological model of shock initiation in heterogeneous explosives , 1980 .

[7]  C. W. Hirt,et al.  Volume of fluid (VOF) method for the dynamics of free boundaries , 1981 .

[8]  Oliver A. McBryan,et al.  A numerical method for two phase flow with an unstable interface , 1981 .

[9]  J. Halleux,et al.  An arbitrary lagrangian-eulerian finite element method for transient dynamic fluid-structure interactions , 1982 .

[10]  P. Lax,et al.  On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws , 1983 .

[11]  A. Malyshev,et al.  Hyperbolic equations for heat transfer. Global solvability of the Cauchy problem , 1986 .

[12]  E. I. Romenskii Hyperbolic equations of Maxwell's nonlinear model of elastoplastic heat-conducting media , 1989 .

[13]  E. Toro Riemann Solvers and Numerical Methods for Fluid Dynamics , 1997 .

[14]  W. Rider,et al.  Reconstructing Volume Tracking , 1998 .

[15]  S. Osher,et al.  A Non-oscillatory Eulerian Approach to Interfaces in Multimaterial Flows (the Ghost Fluid Method) , 1999 .

[16]  R. Abgrall,et al.  A Multiphase Godunov Method for Compressible Multifluid and Multiphase Flows , 1999 .

[17]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[18]  S. Osher,et al.  Level set methods: an overview and some recent results , 2001 .

[19]  Fayssal Benkhaldoun,et al.  Exact solutions to the Riemann problem of the shallow water equations with a bottom step , 2001 .

[20]  R. Fedkiw,et al.  Coupling an Eulerian fluid calculation to a Lagrangian solid calculation with the ghost fluid method , 2002 .

[21]  G. J. Ball,et al.  A free-Lagrange augmented Godunov method for the simulation of elastic-plastic solids , 2002 .

[22]  Boo Cheong Khoo,et al.  Ghost fluid method for strong shock impacting on material interface , 2003 .

[23]  Ronald Fedkiw,et al.  Level set methods and dynamic implicit surfaces , 2002, Applied mathematical sciences.

[24]  Richard Saurel,et al.  Modelling detonation waves in heterogeneous energetic materials , 2004 .

[25]  Michael L. Corradini,et al.  A thermodynamically consistent and fully conservative treatment of contact discontinuities for compressible multicomponent flows , 2004 .

[26]  G. Miller,et al.  An iterative Riemann solver for systems of hyperbolic conservation laws, with application to hyperelastic solid mechanics , 2004 .

[27]  T. Belytschko,et al.  An Eulerian–Lagrangian method for fluid–structure interaction based on level sets , 2006 .

[28]  Eugenio Oñate,et al.  The ALE/Lagrangian Particle Finite Element Method: A new approach to computation of free-surface flows and fluid–object interactions , 2007 .

[29]  Eleuterio F. Toro,et al.  Conservative hyperbolic formulation for compressible two-phase flow with different phase pressures and temperatures , 2007 .

[30]  P. Levashov,et al.  TABULAR MULTIPHASE EQUATIONS OF STATE FOR METALS AND THEIR APPLICATIONS , 2007 .

[31]  H. S. Udaykumar,et al.  Ghost Fluid Method for Strong Shock Interactions Part 1: Fluid-Fluid Interfaces , 2009 .

[32]  Richard Saurel,et al.  Solid-fluid diffuse interface model in cases of extreme deformations , 2009, J. Comput. Phys..

[33]  H. S. Udaykumar,et al.  Ghost Fluid Method for Strong Shock Interactions Part 2: Immersed Solid Boundaries , 2009 .

[34]  Vladimir A. Titarev,et al.  Exact and approximate solutions of Riemann problems in non-linear elasticity , 2009, J. Comput. Phys..

[35]  E. Oñate,et al.  A monolithic Lagrangian approach for fluid–structure interaction problems , 2010 .

[36]  Dimitris Drikakis,et al.  An Eulerian method for multi-component problems in non-linear elasticity with sliding interfaces , 2010, J. Comput. Phys..

[37]  Dimitris Drikakis,et al.  An Eulerian finite‐volume scheme for large elastoplastic deformations in solids , 2010 .

[38]  Eleuterio F. Toro,et al.  Conservative Models and Numerical Methods for Compressible Two-Phase Flow , 2010, J. Sci. Comput..

[39]  Dimitris Drikakis,et al.  A conservative level-set based method for compressible solid/fluid problems on fixed grids , 2011, J. Comput. Phys..

[40]  J. Boettger,et al.  TABULAR EQUATION OF STATE FOR GOLD , 2011 .

[41]  J. Boettger,et al.  Global Equation of State for Copper , 2011 .

[42]  Michael Dumbser,et al.  A Simple Extension of the Osher Riemann Solver to Non-conservative Hyperbolic Systems , 2011, J. Sci. Comput..

[43]  Michael Dumbser,et al.  On Universal Osher-Type Schemes for General Nonlinear Hyperbolic Conservation Laws , 2011 .

[44]  G. Hou,et al.  Numerical Methods for Fluid-Structure Interaction — A Review , 2012 .

[45]  S. L. Gavrilyuk,et al.  Diffuse interface model for compressible fluid - Compressible elastic-plastic solid interaction , 2012, J. Comput. Phys..

[46]  Rémi Abgrall,et al.  A nominally second-order cell-centered Lagrangian scheme for simulating elastic-plastic flows on two-dimensional unstructured grids , 2013, J. Comput. Phys..

[47]  Michael Dumbser,et al.  ADER-WENO finite volume schemes with space-time adaptive mesh refinement , 2012, J. Comput. Phys..

[48]  Nikolaos Nikiforakis,et al.  An Eulerian algorithm for coupled simulations of elastoplastic-solids and condensed-phase explosives , 2013, J. Comput. Phys..

[49]  N. Buyukcizmeci,et al.  TABULATED EQUATION OF STATE FOR SUPERNOVA MATTER INCLUDING FULL NUCLEAR ENSEMBLE , 2013, 1304.6741.

[50]  Ilya Peshkov,et al.  On a pure hyperbolic alternative to the Navier-Stokes equations , 2014 .

[51]  Nicolas Favrie,et al.  Multi-solid and multi-fluid diffuse interface model: Applications to dynamic fracture and fragmentation , 2015, J. Comput. Phys..

[52]  Nikolaos Nikiforakis,et al.  A hybrid formulation for the numerical simulation of condensed phase explosives , 2016, J. Comput. Phys..

[53]  Angelo Iollo,et al.  A Cartesian scheme for compressible multimaterial models in 3D , 2016, J. Comput. Phys..

[54]  Michael Dumbser,et al.  Cell centered direct Arbitrary-Lagrangian-Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity , 2016 .

[55]  Michael Dumbser,et al.  A new efficient formulation of the HLLEM Riemann solver for general conservative and non-conservative hyperbolic systems , 2016, J. Comput. Phys..

[56]  Michael Dumbser,et al.  High order ADER schemes for a unified first order hyperbolic formulation of continuum mechanics: Viscous heat-conducting fluids and elastic solids , 2015, J. Comput. Phys..

[57]  Angelo Iollo,et al.  A Cartesian Scheme for Compressible Multimaterial Hyperelastic Models with Plasticity , 2017 .

[58]  T. Ertl,et al.  Simulation of real gas effects in supersonic methane jets using a tabulated equation of state with a discontinuous Galerkin spectral element method , 2017 .

[59]  Haran Jackson,et al.  A fast numerical scheme for the Godunov-Peshkov-Romenski model of continuum mechanics , 2017, J. Comput. Phys..

[60]  Nikolaos Nikiforakis,et al.  A multi-physics methodology for the simulation of reactive flow and elastoplastic structural response , 2017, J. Comput. Phys..

[61]  Haran Jackson,et al.  A numerical scheme for non-Newtonian fluids and plastic solids under the GPR model , 2018, J. Comput. Phys..

[62]  Aaas News,et al.  Book Reviews , 1893, Buffalo Medical and Surgical Journal.

[63]  Michael Dumbser,et al.  Theoretical and numerical comparison of hyperelastic and hypoelastic formulations for Eulerian non-linear elastoplasticity , 2018, J. Comput. Phys..