Spline-Based Deforming Ellipsoids for Interactive 3D Bioimage Segmentation

We present a new fast active-contour model (a.k.a. snake) for image segmentation in 3D microscopy. We introduce a parametric design that relies on exponential B-spline bases and allows us to build snakes that are able to reproduce ellipsoids. We design our bases to have the shortest-possible support, subject to some constraints. Thus, computational efficiency is maximized. The proposed 3D snake can approximate blob-like objects with good accuracy and can perfectly reproduce spheres and ellipsoids, irrespective of their position and orientation. The optimization process is remarkably fast due to the use of Gauss' theorem within our energy computation scheme. Our technique yields successful segmentation results, even for challenging data where object contours are not well defined. This is due to our parametric approach that allows one to favor prior shapes. In addition, this paper provides a software that gives full control over the snakes via an intuitive manipulation of few control points.

[1]  Michael Unser,et al.  The Ovuscule , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Xiao Han,et al.  A Topology Preserving Level Set Method for Geometric Deformable Models , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[3]  H. Piaggio Differential Geometry of Curves and Surfaces , 1952, Nature.

[4]  Thierry Blu,et al.  Efficient energies and algorithms for parametric snakes , 2004, IEEE Transactions on Image Processing.

[5]  Guillermo Sapiro,et al.  Geodesic Active Contours , 1995, International Journal of Computer Vision.

[6]  F L Bookstein,et al.  A comparison of three dimensional maximum reach estimation techniques. , 1980, Journal of biomechanics.

[7]  Will Tribbey,et al.  Numerical Recipes: The Art of Scientific Computing (3rd Edition) is written by William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery, and published by Cambridge University Press, © 2007, hardback, ISBN 978-0-521-88068-8, 1235 pp. , 1987, SOEN.

[8]  M. Unser Sampling-50 years after Shannon , 2000, Proceedings of the IEEE.

[9]  Paolo Costantini An algorithm for computing shape-preserving interpolating splines of arbitrary degree , 1988 .

[10]  Thierry Blu,et al.  Unifying approach and interface for spline-based snakes , 2001, SPIE Medical Imaging.

[11]  P. R. Pfluger,et al.  B-Spline Approximation of a Closed Surface , 1987 .

[12]  Frédéric Precioso,et al.  B-spline active contours for fast video segmentation , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[13]  Michael Unser,et al.  Exponential splines and minimal-support bases for curve representation , 2012, Comput. Aided Geom. Des..

[14]  Elsa D. Angelini,et al.  Surface Function Actives , 2009, J. Vis. Commun. Image Represent..

[15]  Jean Ponce,et al.  Segmentation by transduction , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[16]  Les A. Piegl,et al.  The NURBS book (2nd ed.) , 1997 .

[17]  Daniel Cremers,et al.  Statistical shape knowledge in variational motion segmentation , 2003, Image Vis. Comput..

[18]  A. Aldroubi,et al.  Sampling procedures in function spaces and asymptotic equivalence with shannon's sampling theory , 1994 .

[19]  Jean-Christophe Olivo-Marin,et al.  3-D Active Meshes: Fast Discrete Deformable Models for Cell Tracking in 3-D Time-Lapse Microscopy , 2011, IEEE Transactions on Image Processing.

[20]  Michael Unser,et al.  Fast parametric snakes for 3D microscopy , 2012, 2012 9th IEEE International Symposium on Biomedical Imaging (ISBI).

[21]  Demetri Terzopoulos,et al.  Snakes: Active contour models , 2004, International Journal of Computer Vision.

[22]  Paul Dierckx,et al.  Algorithms for smoothing data on the sphere with tensor product splines , 1984, Computing.

[23]  Michael Unser,et al.  Snakes with Ellipse-Reproducing Property , 2011 .

[24]  Nicolas Chenouard,et al.  Icy: an open bioimage informatics platform for extended reproducible research , 2012, Nature Methods.

[25]  James S. Duncan,et al.  Boundary Finding with Parametrically Deformable Models , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[26]  Eric A. Hoffman,et al.  Atlas-driven lung lobe segmentation in volumetric X-ray CT images , 2006, IEEE Transactions on Medical Imaging.

[27]  L. Roux,et al.  Plasticity of astroglial networks in olfactory glomeruli , 2011, Proceedings of the National Academy of Sciences.

[28]  Hervé Delingette,et al.  General Object Reconstruction Based on Simplex Meshes , 1999, International Journal of Computer Vision.

[29]  L. Schumaker,et al.  Fitting scattered data on spherelike surfaces using tensor products of trigonometric and polynomial splines , 1991 .

[30]  Ronald A. DeVore,et al.  Partitions of Unity and Approximation , 1985 .

[31]  Denis Friboulet,et al.  B-Spline Explicit Active Surfaces: An Efficient Framework for Real-Time 3-D Region-Based Segmentation , 2012, IEEE Transactions on Image Processing.

[32]  Tony F. Chan,et al.  Active contours without edges , 2001, IEEE Trans. Image Process..

[33]  Michael Unser,et al.  B-spline snakes: a flexible tool for parametric contour detection , 2000, IEEE Trans. Image Process..

[34]  Wolfgang Böhm,et al.  On de Boor-like algorithms and blossoming , 1988, Comput. Aided Geom. Des..

[35]  J. E. Glynn,et al.  Numerical Recipes: The Art of Scientific Computing , 1989 .

[36]  José M. N. Leitão,et al.  Unsupervised contour representation and estimation using B-splines and a minimum description length criterion , 2000, IEEE Trans. Image Process..

[37]  Christoph M. Hoffmann,et al.  Geometric and Solid Modeling , 1989 .

[38]  Demetri Terzopoulos,et al.  T-snakes: Topology adaptive snakes , 2000, Medical Image Anal..

[39]  V. Rovenski,et al.  Differential Geometry of Curves and Surfaces , 1952, Nature.