Energy scenarios: the value and limits of scenario analysis

A need for low‐carbon world has added a new challenging dimension for the long‐term energy scenarios development. In addition to the traditional factors like technological progress, demographic, economic, political, and institutional considerations, there is another aspect of the modern energy forecasts related to the coverage, timing, and stringency of policies to mitigate the greenhouse gas emissions and air pollutants. Modern tools for the energy scenario development provide a good basis for the estimates of the required changes in the energy system to achieve certain climate and environmental targets. While the current scenarios show that a move to a low‐carbon energy future requires a drastic change in energy investment and the resulting mix in energy technologies, the exact technology mix, paths to the needed mix, price, and cost projections should be treated with a great degree of caution. The scenarios do not provide exact predictions, but they can be used as a qualitative analysis of decision‐making risks associated with different pathways. If history is any guide, energy scenarios overestimate the extent to which the future will look like the recent past. As future costs and the resulting technology mixes are uncertain, a wise government policy is to target emissions reductions from any source, rather than focus on boosting certain kinds of low‐carbon energy. WIREs Energy Environ 2017, 6:e242. doi: 10.1002/wene.242

[1]  J. Mathias,et al.  Program , 1970, Symposium on VLSI Technology.

[2]  J. Edmonds,et al.  Global Energy: Assessing the Future , 1985 .

[3]  W. A. Bakar,et al.  Natural Gas , 2023, ACADEMIA - The magazine of the Polish Academy of Sciences.

[4]  P. Sands The United Nations Framework Convention on Climate Change , 1992 .

[5]  W. Nordhaus The 'DICE' Model: Background and Structure of a Dynamic Integrated Climate-Economy Model of the Economics of Global Warming , 1992 .

[6]  U. Zweifel,et al.  United Nations Environment Programme , 2005, Essential Concepts of Global Environmental Governance.

[7]  N. Mankiw The Growth of Nations , 1995 .

[8]  William D. Nordhaus,et al.  A Regional Dynamic General-Equilibrium Model of Alternative Climate-Change Strategies , 1996 .

[9]  S. Messner,et al.  Endogenized technological learning in an energy systems model , 1997 .

[10]  Unfccc Kyoto Protocol to the United Nations Framework Convention on Climate Change , 1997 .

[11]  Aie World Energy Outlook 2009 , 2000 .

[12]  Pantelis Capros,et al.  The European energy outlook to 2010 and 2030 , 2000 .

[13]  D. Henschen,et al.  Outlook 2000 , 2000 .

[14]  H. Herzog Peer Reviewed: What Future for Carbon Capture and Sequestration? , 2001 .

[15]  H. Herzog,et al.  What future for carbon capture and sequestration? , 2001, Environmental science & technology.

[16]  David Popp,et al.  Entice: Endogenous Technological Change in the Dice Model of Global Warming , 2003 .

[17]  Aie World Energy Outlook 2004 , 2004 .

[18]  Wenying Chen,et al.  The costs of mitigating carbon emissions in China: findings from China MARKAL-MACRO modeling , 2005 .

[19]  Aie World Energy Outlook 2005 , 2005 .

[20]  Sergey Paltsev,et al.  The MIT Emissions Prediction and Policy Analysis (EPPA) Model: Version 4 , 2005 .

[21]  Martin T. Ross Documentation of the Applied Dynamic Analysis of the Global Economy (ADAGE) Model , 2005 .

[22]  Alan S. Manne,et al.  Merge: An Integrated Assessment Model for Global Climate Change , 2005 .

[23]  William J. Nuttall,et al.  Nuclear Power: A Hedge against Uncertain Gas and Carbon Prices? , 2006 .

[24]  Aie World Energy Outlook 2000 , 2000 .

[25]  Mark Jaccard,et al.  Hybrid Modeling: New Answers to Old Challenges Introduction to the Special Issue of The Energy Journal , 2006 .

[26]  M. Tavoni,et al.  A World Induced Technical Change Hybrid Model , 2006 .

[27]  D. V. van Vuuren,et al.  Peaking profiles for achieving long-term temperature targets with more likelihood at lower costs , 2007, Proceedings of the National Academy of Sciences.

[28]  Energy Agency World Energy Outlook 2007 : China and India Insights , 2007 .

[29]  A. Hasan,et al.  Organisation for Economic Co-operation and Development , 2007 .

[30]  J. Edmonds,et al.  Scenarios of Greenhouse Gas Emissions and Atmospheric Concentrations , 2007 .

[31]  Aie World Energy Outlook 2007 , 2007 .

[32]  Nassim Nicholas Taleb,et al.  The Black Swan: The Impact of the Highly Improbable , 2007 .

[33]  Fiona Venn,et al.  Organization of Petroleum Exporting Countries , 2008 .

[34]  Christian von Hirschhausen,et al.  A strategic model of European gas supply (GASMOD) , 2008 .

[35]  T. Rutherford,et al.  Combining bottom-up and top-down , 2008 .

[36]  Aie World Energy Outlook 2009 , 2000 .

[37]  Sergey Paltsev,et al.  Probabilistic forecast for twenty-first-century climate based on uncertainties in emissions (without policy) and climate parameters. , 2009 .

[38]  Valentina Bosetti,et al.  Climate Change Mitigation Strategies in Fast-Growing Countries: The Benefits of Early Action , 2009, SSRN Electronic Journal.

[39]  N. Meinshausen,et al.  Greenhouse-gas emission targets for limiting global warming to 2 °C , 2009, Nature.

[40]  J. Edmonds,et al.  2.6: Limiting climate change to 450 ppm CO2 equivalent in the 21st century , 2009 .

[41]  Maryse Labriet,et al.  Deterministic and stochastic analysis of alternative climate targets under differentiated cooperation regimes , 2009 .

[42]  Keywan Riahi,et al.  Implications of delayed participation and technology failure for the feasibility, costs, and likelihood of staying below temperature targets—Greenhouse gas mitigation scenarios for the 21st century , 2009 .

[43]  J. Edmonds,et al.  Uncertainties in climate stabilization , 2009 .

[44]  Rudy M. Baum Outlook For 2009 , 2009 .

[45]  Ronald G. Prinn,et al.  Probabilistic Forecast for 21st Century Climate Based on Uncertainties in Emissions , 2009 .

[46]  L. Clarke,et al.  International climate policy architectures: Overview of the EMF 22 International Scenarios , 2009 .

[47]  Sergey Paltsev,et al.  Forward-looking versus recursive-dynamic modeling in climate policy analysis: A comparison , 2009 .

[48]  Mei Yuan,et al.  A top–down bottom–up modeling approach to climate change policy analysis , 2009 .

[49]  Steven A. Gabriel,et al.  The Future of Natural Gas , 2010 .

[50]  Keywan Riahi,et al.  Downscaling socioeconomic and emissions scenarios for global environmental change research: a review , 2010 .

[51]  Rik Eshuis,et al.  Outlook , 2010, Dynamic Business Process Formation for Instant Virtual Enterprises.

[52]  Sergey Paltsev,et al.  Analysis of climate policy targets under uncertainty , 2012, Climatic Change.

[53]  H. Herzog,et al.  Scaling up carbon dioxide capture and storage: From megatons to gigatons , 2011 .

[54]  P. Joskow Comparing the Costs of Intermittent and Dispatchable Electricity Generating Technologies , 2011 .

[55]  Keywan Riahi,et al.  The relationship between short-term emissions and long-term concentration targets , 2011 .

[56]  Aie World Energy Outlook 2011 , 2011 .

[57]  Nate Blair,et al.  Regional Energy Deployment System (ReEDS) , 2011 .

[58]  M. Sarofim,et al.  Scenarios with MIT integrated global systems model: significant global warming regardless of different approaches , 2011, World Scientific Encyclopedia of Climate Change.

[59]  Matthew Mowers,et al.  Distributional and Efficiency Impacts of Clean and Renewable Energy Standards for Electricity , 2012 .

[60]  Shinichiro Fujimori,et al.  What are the starting points? Evaluating base-year assumptions in the Asian Modeling Exercise , 2012 .

[61]  P. Lund The European Union challenge: integration of energy, climate, and economic policy , 2012 .

[62]  S. Paltsev Implications of Alternative Mitigation Policies on World Prices for Fossil Fuels and Agricultural Products , 2012 .

[63]  Aie World Energy Outlook 2011 , 2001 .

[64]  Sebastiaan Deetman,et al.  The impact of technology availability on the timing and costs of emission reductions for achieving long-term climate targets , 2014, Climatic Change.

[65]  Aie,et al.  World Energy Outlook 2013 , 2013 .

[66]  Danièle Revel,et al.  World energy scenarios : Composing energy futures to 2050 , 2013 .

[67]  Howard J. Herzog,et al.  NER300: Lessons learnt in attempting to secure CCS projects in Europe , 2013 .

[68]  R. Selin The Outlook for Energy: A View to 2040 , 2013 .

[69]  G. Luderer,et al.  Global fossil energy markets and climate change mitigation – an analysis with REMIND , 2012, Climatic Change.

[70]  Jeffery R. Scott,et al.  Integrated economic and climate projections for impact assessment , 2013, Climatic Change.

[71]  Volker Krey,et al.  Global energy‐climate scenarios and models: a review , 2014 .

[72]  Sergey Paltsev,et al.  Scenarios for Russia's natural gas exports to 2050 , 2014 .

[73]  Alexander S Preker,et al.  Outlook for 2015. , 2014, World hospitals and health services : the official journal of the International Hospital Federation.

[74]  Jennifer F. Morris,et al.  Electricity Generation and Emissions Reduction Decisions under Policy Uncertainty: A General Equilibrium Analysis , 2014 .

[75]  L. Clarke,et al.  Assessing Transformation Pathways , 2014 .

[76]  Christopher B. Field,et al.  IPCC Fifth Assessment Synthesis Report-Climate Change 2014 Synthesis Report , 2014 .

[77]  John P. Weyant,et al.  The role of technology for achieving climate policy objectives: overview of the EMF 27 study on global technology and climate policy strategies , 2014, Climatic Change.

[78]  Aie,et al.  World Energy Outlook 2011 , 2001 .

[79]  Valerie J. Karplus,et al.  Markets versus Regulation: The Efficiency and Distributional Impacts of U.S. Climate Policy Proposals , 2014 .

[80]  Elisa Lanzi,et al.  Background Report: An Overview of the OECD ENV-Linkages model , 2010 .

[81]  Jennifer Morris,et al.  Renewables Intermittency: Operational Limits and Implications for Long-Term Energy System Models , 2015 .

[82]  Aie World Energy Outlook 2015 , 2015 .

[83]  C. Flachsland Mitigation of Climate Change: Contribution of Working Group III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change , 2015 .

[84]  S. Paltsev,et al.  Regulatory control of vehicle and power plant emissions: how effective and at what cost? , 2015 .

[85]  Valentina Bosetti,et al.  Modeling Uncertainty in Climate Change: A Multi-Model Comparison , 2015, SSRN Electronic Journal.

[86]  M. Ha-Duong,et al.  Climate change 2014 - Mitigation of climate change , 2015 .

[87]  Andrew Garnett,et al.  Understanding constraints to the transformation rate of global energy infrastructure , 2019, Advances in Energy Systems.

[88]  Jennifer F. Morris,et al.  Electricity Investments under Technology Cost Uncertainty and Stochastic Technological Learning , 2016 .

[89]  Marko Wagner,et al.  Global Trade Analysis Modeling And Applications , 2016 .

[90]  K. Calvin,et al.  Baseline projections for Latin America: base-year assumptions, key drivers and greenhouse emissions , 2016 .

[91]  David Reiner,et al.  Learning through a portfolio of carbon capture and storage demonstration projects , 2016, Nature Energy.

[92]  J. Blau The Paris Agreement , 2017 .