Application of Chaos Control Techniques to Fluid Turbulence

In non-linear dynamics, sensitive dependence on initial conditions is known as chaos, which is pervasive in fluids. All fluid mechanical systems in nature and technology are prone to chaos. The popular butterfly effect is often stated as follows: if a butterfly flutters in Brazil, it can cause torandoes in Texas [1]. Understanding chaos in fluids is the chief outstanding problem in non-linear science and is often regarded with reverence. To keep it straight and simple, chaos in the context of fluids is known as turbulence and its various facets are well investigated by researchers. However, the outstanding nature of the turbulent flows, continues to attract the attention and fascination of physicists, engineers and Mathematicians alike. The non-linear partial differential equations, given by Navier-Stokes exactly describe turbulent flows. Ideally, it is possible to employ a fine grid resolution and simulate the entire spectrum of eddy sizes that are present in the flow. Thus, temporal and spatial behaviour of fluid motion is described by partial differential equations. By approximating the spatial co-ordinates with a finite grid, a set of algebraic equations can be derived and time marching strategies can be devised. The level of complication increases as fluid dynamics involves multi-degree of freedom systems [2].

[1]  Celso Grebogi,et al.  THE CONTROL OF CHAOS: THEORETICAL SCHEMES AND EXPERIMENTAL REALIZATIONS , 1998 .

[2]  O. Rossler,et al.  Chaos in the Zhabotinskii reaction , 1978, Nature.

[3]  T. Tél,et al.  Chaotic Dynamics: An Introduction Based on Classical Mechanics , 2006 .

[4]  Mohamed Gad-el-Hak,et al.  Flow control : fundamentals and practices , 1998 .

[5]  G. Wei,et al.  Controlling wake turbulence. , 2002, Physical review letters.

[6]  I. Aranson,et al.  The world of the complex Ginzburg-Landau equation , 2001, cond-mat/0106115.

[7]  Sridhar Muddada,et al.  An active flow control strategy for the suppression of vortex structures behind a circular cylinder , 2010 .

[8]  S. J. Kline,et al.  Quasi-coherent structures in the turbulent boundary layer. I - Status report on a community-wide summary of the data , 1990 .

[9]  E. A. Gillies Multiple sensor control of vortex shedding , 2001 .

[10]  Parlitz,et al.  Synchronization and control of coupled ginzburg-landau equations using local coupling , 2000, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[11]  Mohamed Gad-el-Hak Flow Control: Flow Control , 2000 .

[12]  E. Lamballais,et al.  Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900 , 2008 .

[13]  Jean-François Beaudoin,et al.  Drag reduction of a bluff body using adaptive control methods , 2006 .

[14]  Ionel M. Navon,et al.  Optimal control of cylinder wakes via suction and blowing , 2003, Computers & Fluids.

[15]  Mohamed Gad-el-Hak,et al.  Transition and turbulence control , 2005 .

[16]  B. Launder,et al.  The numerical computation of turbulent flows , 1990 .

[17]  John S. Rigden,et al.  Rabi: Scientist and Citizen , 1988 .

[18]  Peter W. Carpenter,et al.  Status of Transition Delay Using Compliant Walls , 1989 .

[19]  M. V. Dyke,et al.  An Album of Fluid Motion , 1982 .

[20]  A Garfinkel,et al.  Controlling cardiac chaos. , 1992, Science.

[21]  Robert King,et al.  Model-based Control of Vortex Shedding Using Low-dimensional Galerkin Models , 2003 .

[22]  P. Moin,et al.  Numerical studies of flow over a circular cylinder at ReD=3900 , 2000 .

[23]  N. Fujisawa,et al.  Feedback control of vortex shedding from a circular cylinder by cross-flow cylinder oscillations , 1996 .

[24]  P. Moin,et al.  DIRECT NUMERICAL SIMULATION: A Tool in Turbulence Research , 1998 .

[25]  O. Reynolds On the dynamical theory of incompressible viscous fluids and the determination of the criterion , 1995, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[26]  Sridhar Muddada,et al.  An assessment of turbulence models for the prediction of flow past a circular cylinder with momentum injection , 2010 .

[27]  Kankanhalli N. Seetharamu,et al.  NUMERICAL SIMULATION OF LAMINAR FLOW PAST A TRANSVERSELY VIBRATING CIRCULAR CYLINDER , 1999 .

[28]  Haecheon Choi,et al.  Suboptimal feedback control of vortex shedding at low Reynolds numbers , 1999, Journal of Fluid Mechanics.

[29]  Mohamed Gad-el-Hak,et al.  Flow Control: Passive, Active, and Reactive Flow Management , 2000 .

[30]  K. N. Seetharamu,et al.  Numerical simulation of vortex shedding past a circular cylinder under the influence of buoyancy , 1999 .

[31]  F. Clauser The Turbulent Boundary Layer , 1956 .

[32]  A. Roshko,et al.  On density effects and large structure in turbulent mixing layers , 1974, Journal of Fluid Mechanics.

[33]  J. Chomaz,et al.  Bifurcations to local and global modes in spatially developing flows. , 1988, Physical review letters.

[34]  H. Liepmann The rise and fall of ideas in turbulence , 1979 .

[35]  D. W. Bechert,et al.  Experiments on drag-reducing surfaces and their optimization with an adjustable geometry , 1997, Journal of Fluid Mechanics.

[36]  K. Noto,et al.  Formulation and Numerical Methodology for Three-Dimensional Wake of Heated Circular Cylinder , 2006 .

[37]  Gang Hu,et al.  Controlling flow turbulence with moving controllers , 2005 .

[38]  J. N. Hefner,et al.  Viscous drag reduction in boundary layers , 1990 .

[39]  Ilarion V. Melnikov,et al.  Mechanisms of extensive spatiotemporal chaos in Rayleigh–Bénard convection , 2000, Nature.

[40]  W. Rodi Comparison of LES and RANS calculations of the flow around bluff bodies , 1997 .

[41]  Eric D. Barton,et al.  The influence of island-generated eddies on chlorophyll distribution : a study of mesoscale variation around Gran Canaria , 1997 .

[42]  J. Lumley,et al.  CONTROL OF TURBULENCE , 1998 .

[43]  A. Kolmogorov Dissipation of energy in the locally isotropic turbulence , 1941, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[44]  K. Kudar,et al.  A deterministic model for the sublayer streaks in turbulent boundary layers for application to flow control , 2007, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[45]  Nadine Aubry,et al.  Closed-loop control of vortex-induced vibration , 2005 .

[46]  Frank Thiele,et al.  Comparison of LES and RANS in bluff-body flows , 2001 .

[47]  Leonard Topper,et al.  Turbulence : classic papers on statistical theory , 1961 .

[48]  N. Fujisawa,et al.  Flow control around a circular cylinder by internal acoustic excitation , 2003 .

[49]  S Boccaletti,et al.  Controlling and synchronizing space time chaos. , 1999, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[50]  Mohamed Gad-el-Hak,et al.  Reynolds Number Effects in Wall-Bounded Turbulent Flows , 1994 .

[51]  Jean-François Beaudoin,et al.  Bluff-body drag reduction by extremum-seeking control , 2006 .

[52]  Anthony D. Lucey,et al.  Progress on the Use of Compliant Walls for Laminar-Flow Control , 2001 .

[53]  Peter Carpenter,et al.  The right sort of roughness , 1997, Nature.

[54]  Celso Grebogi,et al.  Chemical and biological activity in open flows: A dynamical system approach , 2005 .

[55]  R. Grundmann,et al.  Electromagnetic control of seawater flow around circular cylinders , 2001 .

[56]  B. Launder,et al.  THE NUMERICAL COMPUTATION OF TURBULENT FLOW , 1974 .

[57]  H. Sobieczky,et al.  Supercritical Airfoil and Wing Design , 1984 .

[58]  Shuguang Guan,et al.  Controlling flow turbulence , 2003 .

[59]  C. Williamson Vortex Dynamics in the Cylinder Wake , 1996 .

[60]  D. Tritton,et al.  Physical Fluid Dynamics , 1977 .

[61]  V. J. Modi,et al.  MOVING SURFACE BOUNDARY-LAYER CONTROL: A REVIEW , 1997 .

[62]  Mohamed Gad-el-Hak,et al.  On the growth of turbulent regions in laminar boundary layers , 1981, Journal of Fluid Mechanics.

[63]  L. Sirovich,et al.  Turbulent drag reduction by passive mechanisms , 1997, Nature.

[64]  Tee Tai Lim,et al.  The vortex-shedding process behind two-dimensional bluff bodies , 1982, Journal of Fluid Mechanics.

[65]  S. K. Robinson,et al.  Coherent Motions in the Turbulent Boundary Layer , 1991 .

[66]  Sanjay Garg,et al.  Development of Piezoelectric Actuators for Active Flow Control , 2001 .

[67]  Ditto,et al.  Experimental control of chaos. , 1990, Physical review letters.

[68]  P. Dimotakis,et al.  Rotary oscillation control of a cylinder wake , 1989, Journal of Fluid Mechanics.

[69]  B. Launder,et al.  Application of the energy-dissipation model of turbulence to the calculation of flow near a spinning disc , 1974 .

[70]  J. Fung,et al.  Rapid distortion theory as a means of exploring the structure of turbulence , 1991 .

[71]  Roy,et al.  Dynamical control of a chaotic laser: Experimental stabilization of a globally coupled system. , 1992, Physical review letters.

[72]  Lawrence Sirovich,et al.  New Perspectives in Turbulence , 2011 .

[73]  Dietmar Saupe,et al.  Chaos and fractals - new frontiers of science , 1992 .

[74]  Auerbach,et al.  Exploring chaotic motion through periodic orbits. , 1987, Physical review letters.

[75]  E. W. Hendricks,et al.  Feedback control of von Kármán vortex shedding behind a circular cylinder at low Reynolds numbers , 1994 .

[76]  G W Wei,et al.  Synchronization of single-side locally averaged adaptive coupling and its application to shock capturing. , 2001, Physical review letters.

[77]  Seyed G. Saddoughi,et al.  Local isotropy in turbulent boundary layers at high Reynolds number , 1994, Journal of Fluid Mechanics.

[78]  Controlling Flow Turbulence Using Local Pinning Feedback , 2006 .

[79]  C. Letellier,et al.  Chaos and Turbulence , 2020, Chaos.

[80]  Kestutis Pyragas Continuous control of chaos by self-controlling feedback , 1992 .

[81]  Ilan Kroo,et al.  DRAG DUE TO LIFT: Concepts for Prediction and Reduction , 2001 .

[82]  Kimon Roussopoulos,et al.  Feedback control of vortex shedding at low Reynolds numbers , 1993, Journal of Fluid Mechanics.

[83]  Mohamed Gad-el-Hak Flow Control: Contents , 2000 .

[84]  Wolfgang Rodi,et al.  On the Simulation of Turbulent Flow Past Bluff Bodies , 1993 .

[85]  James Gleick,et al.  Chaos, Making a New Science , 1987 .

[86]  R. Temam,et al.  On some control problems in fluid mechanics , 1990 .

[87]  Paul Manneville,et al.  Instabilities, Chaos and Turbulence , 2010 .

[88]  M. R. Head,et al.  New aspects of turbulent boundary-layer structure , 1981, Journal of Fluid Mechanics.

[89]  Roger Temam,et al.  Optimal and Robust Control of Fluid Flows: Some Theoretical and Computational Aspects , 2008 .

[90]  J. E. Ffowcs Williams,et al.  The active control of vortex shedding , 1989 .

[91]  S. Chernyshenko,et al.  Streaks and vortices in near-wall turbulence , 2005, Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences.

[92]  S. Thorpe,et al.  The Turbulent Ocean , 2005 .

[93]  E. Hunt Stabilizing high-period orbits in a chaotic system: The diode resonator. , 1991 .

[94]  V. J. Modi,et al.  Fluid dynamics of airfoils with moving surface boundary-layer control , 1988 .

[95]  M. J. Walsh,et al.  Drag and heat transfer on surfaces with small longitudinal fins , 1978 .

[96]  F. A. Schraub,et al.  The structure of turbulent boundary layers , 1967, Journal of Fluid Mechanics.

[97]  H. Swinney,et al.  Onset of Turbulence in a Rotating Fluid , 1975 .

[98]  S. Patankar Numerical Heat Transfer and Fluid Flow , 2018, Lecture Notes in Mechanical Engineering.

[99]  C. Williamson,et al.  Vortex-Induced Vibrations , 2004, Wind Effects on Structures.

[100]  Shuguang Guan,et al.  Controllability of flow turbulence. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[101]  Max Gunzburger,et al.  Feedback Control of Karman Vortex Shedding , 1996 .

[102]  G. Hu,et al.  Controlling Turbulence in the Complex Ginzburg-Landau Equation , 1998 .

[103]  Ying-Cheng Lai,et al.  Controlling chaos , 1994 .

[104]  A. Roshko,et al.  Perspectives on bluff body aerodynamics , 1993 .

[105]  Brian J. Cantwell,et al.  Organized Motion in Turbulent Flow , 1981 .

[106]  V. J. Modi,et al.  Fluid dynamics of airfoils with moving surface boundary layer control , 1986 .

[107]  L. Olsen,et al.  Chaos versus noisy periodicity: alternative hypotheses for childhood epidemics. , 1990, Science.

[108]  Yukio Ishida,et al.  Flow‐Induced Vibrations , 2012 .

[109]  S. Pope Turbulent Flows: FUNDAMENTALS , 2000 .

[110]  Nobuhide Kasagi,et al.  Active control of lifted diffusion flames with arrayed micro actuators , 2005 .