Design Considerations for Generic Grouping in Vision

Grouping in vision can be seen as the process that organizes image entities into higher-level structures. Despite its importance, there is little consistency in the statement of the grouping problem in literature. In addition, most grouping algorithms in vision are inspired on a specific technique, rather than being based on desired characteristics, making it cumbersome to compare the behavior of various methods. We discuss six precisely formulated considerations for the design of generic grouping algorithms in vision: proper definition, invariance, multiple interpretations, multiple solutions, simplicity and robustness. We observe none of the existing algorithms for grouping in vision meet all the considerations. We present a simple algorithm as an extension of a classical algorithm, where the extension is based on taking the considerations into account. The algorithm is applied to three examples: grouping point sets, grouping poly-lines, and grouping flow-field vectors. The complexity of the greedy algorithm is O(nO/sub G/), where O/sub G/ is the complexity of the grouping measure.

[1]  G. N. Lance,et al.  A general theory of classificatory sorting strategies: II. Clustering systems , 1967, Comput. J..

[2]  Narendra Ahuja,et al.  Extraction of early perceptual structure in dot patterns: Integrating region, boundary, and component gestalt , 1989, Comput. Vis. Graph. Image Process..

[3]  M. Fischler,et al.  Perceptual organization and curve partitioning , 1987 .

[4]  King-Sun Fu,et al.  A Sentence-to-Sentence Clustering Procedure for Pattern Analysis , 1978, IEEE Transactions on Systems, Man, and Cybernetics.

[5]  Anil K. Jain,et al.  Algorithms for Clustering Data , 1988 .

[6]  Anil K. Jain,et al.  Artificial neural networks and statistical pattern recognition : old and new connections , 1991 .

[7]  W. Eric L. Grimson,et al.  The Combinatorics of Heuristic Search Termination for Object Recognition in Cluttered Environments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[8]  Refractor Vision , 2000, The Lancet.

[9]  James M. Keller,et al.  A possibilistic approach to clustering , 1993, IEEE Trans. Fuzzy Syst..

[10]  Ingemar J. Cox,et al.  A Bayesian multiple-hypothesis approach to edge grouping and contour segmentation , 1993, International Journal of Computer Vision.

[11]  D. Jacobs Grouping for Recognition , 1989 .

[12]  A. Witkin,et al.  On the Role of Structure in Vision , 1983 .

[13]  S. Zucker,et al.  Evidence for boundary-specific grouping , 1998, Vision Research.

[14]  S. Zucker,et al.  The curve indicator random field , 2001 .

[15]  Anil K. Jain,et al.  Data clustering: a review , 1999, CSUR.

[16]  Richard M. Leahy,et al.  An Optimal Graph Theoretic Approach to Data Clustering: Theory and Its Application to Image Segmentation , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[18]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[19]  Josef Kittler,et al.  A hierarchical approach to line extraction based on the Hough transform , 1990, Comput. Vis. Graph. Image Process..

[20]  R. Nevatia,et al.  Perceptual Organization for Scene Segmentation and Description , 1992, IEEE Trans. Pattern Anal. Mach. Intell..

[21]  Sanjoy K. Mitter,et al.  Hierarchical Image Segmentation—Part I: Detection of Regular Curves in a Vector Graph , 1998, International Journal of Computer Vision.

[22]  Simone Santini,et al.  Similarity Measures , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[23]  Steven W. Zucker,et al.  The diversity of perceptual grouping , 1987 .

[24]  Kim L. Boyer,et al.  Perceptual organization in computer vision: a review and a proposal for a classificatory structure , 1993, IEEE Trans. Syst. Man Cybern..

[25]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[26]  Andrew P. Witkin,et al.  What Is Perceptual Organization For? , 1983, IJCAI.

[27]  David G. Stork,et al.  Pattern Classification , 1973 .

[28]  Roger M. Needham,et al.  A Method for Using Computers in Information Classification , 1962, IFIP Congress.

[29]  Gérard G. Medioni,et al.  Inference of Surfaces, 3D Curves, and Junctions From Sparse, Noisy, 3D Data , 1997, IEEE Trans. Pattern Anal. Mach. Intell..

[30]  Edward M. Riseman,et al.  Token-based extraction of straight lines , 1989, IEEE Trans. Syst. Man Cybern..

[31]  Steven W. Zucker,et al.  Radial Projection: An Efficient Update Rule for Relaxation Labeling , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[32]  Songde Ma,et al.  Some general grouping principles: line perception from points as an example , 1998, Proceedings. Fourteenth International Conference on Pattern Recognition (Cat. No.98EX170).

[33]  W. Eric L. Grimson,et al.  On the Verification of Hypothesized Matches in Model-Based Recognition , 1991, IEEE Trans. Pattern Anal. Mach. Intell..

[34]  David G. Lowe,et al.  Perceptual Organization and Visual Recognition , 2012 .

[35]  Eric Saund Identifying salient circular arcs on curves , 1993 .

[36]  A.W.M. Smeulders,et al.  Requirements for generic grouping in vision and an algorithm , 2001 .

[37]  William E. Wright,et al.  A formalization of cluster analysis , 1973, Pattern Recognit..

[38]  G. N. Lance,et al.  A General Theory of Classificatory Sorting Strategies: 1. Hierarchical Systems , 1967, Comput. J..

[39]  G. N. Lance,et al.  Computer Programs for Hierarchical Polythetic Classification ("Similarity Analyses") , 1966, Comput. J..

[40]  Kim L. Boyer,et al.  Integration, Inference, and Management of Spatial Information Using Bayesian Networks: Perceptual Organization , 1993, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Arnold W. M. Smeulders,et al.  An axiomatic approach to clustering line-segments , 1995, Proceedings of 3rd International Conference on Document Analysis and Recognition.

[42]  Steven W. Zucker,et al.  Trace Inference, Curvature Consistency, and Curve Detection , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[43]  S. Zucker,et al.  The Curve Indicator Random Field: Curve Organization Via Edge Correlation , 2000 .

[44]  Norbert Krüger,et al.  Collinearity and Parallelism are Statistically Significant Second-Order Relations of Complex Cell Responses , 1998, Neural Processing Letters.

[45]  Enrique H. Ruspini,et al.  A New Approach to Clustering , 1969, Inf. Control..

[46]  Richard S. Weiss,et al.  Perceptual Grouping Of Curved Lines , 1989, Other Conferences.

[47]  Jaakko Hintikka,et al.  On the Logic of Perception , 1969 .

[48]  M. Arbib,et al.  Vision, brain, and cooperative computation , 1990 .

[49]  Michael Lindenbaum,et al.  A Generic Grouping Algorithm and Its Quantitative Analysis , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  David W. Jacobs,et al.  Robust and Efficient Detection of Salient Convex Groups , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[51]  David Mumford,et al.  Filtering, Segmentation and Depth , 1993, Lecture Notes in Computer Science.