A high order cell-centered semi-Lagrangian scheme for multi-dimensional kinetic simulations of neutral gas flows
暂无分享,去创建一个
[1] James E. Lawler,et al. Physical and numerical verification of discharge calculations , 1993 .
[2] P. Bhatnagar,et al. A Model for Collision Processes in Gases. I. Small Amplitude Processes in Charged and Neutral One-Component Systems , 1954 .
[3] William Nicholas Guy Hitchon,et al. Self-consistent kinetic simulation of plasmas , 2000 .
[4] Iain D. Boyd,et al. Kinetic description of flow past a micro-plate , 2004 .
[5] Len G. Margolin,et al. Antidiffusive Velocities for Multipass Donor Cell Advection , 1998, SIAM J. Sci. Comput..
[6] W. Nicholas G. Hitchon. Plasma Processes for Semiconductor Fabrication , 1999 .
[7] M. Falcone,et al. Convergence Analysis for a Class of High-Order Semi-Lagrangian Advection Schemes , 1998 .
[8] Jay P. Boris,et al. Flux-corrected transport. I. SHASTA, a fluid transport algorithm that works , 1973 .
[9] André Robert,et al. A stable numerical integration scheme for the primitive meteorological equations , 1981 .
[10] R. LeVeque. Numerical methods for conservation laws , 1990 .
[11] William J. Rider,et al. On sub-linear convergence for linearly degenerate waves in capturing schemes , 2008, J. Comput. Phys..
[12] P. Smolarkiewicz. A Fully Multidimensional Positive Definite Advection Transport Algorithm with Small Implicit Diffusion , 1984 .
[13] J. Broadwell,et al. Study of rarefied shear flow by the discrete velocity method , 1964, Journal of Fluid Mechanics.
[14] Deborah A. Fixel,et al. Convective scheme solution of the Boltzmann transport equation for nanoscale semiconductor devices , 2007, J. Comput. Phys..
[15] B. V. Leer,et al. Towards the ultimate conservative difference scheme. II. Monotonicity and conservation combined in a second-order scheme , 1974 .
[16] P. Roe. CHARACTERISTIC-BASED SCHEMES FOR THE EULER EQUATIONS , 1986 .
[17] Lance M. Leslie,et al. An Efficient Interpolation Procedure for High-Order Three-Dimensional Semi-Lagrangian Models , 1991 .
[18] R. Courant,et al. Über die partiellen Differenzengleichungen der mathematischen Physik , 1928 .
[19] W. Grabowski,et al. The multidimensional positive definite advection transport algorithm: nonoscillatory option , 1990 .
[20] A. Staniforth,et al. Semi-Lagrangian integration schemes for atmospheric models - A review , 1991 .
[21] R. F. Warming,et al. The modified equation approach to the stability and accuracy analysis of finite-difference methods , 1974 .
[22] Eric R. Keiter,et al. A computational investigation of the effects of varying discharge geometry for an inductively coupled plasma , 2000 .
[23] J. Boris,et al. Flux-Corrected Transport , 1997 .
[24] James E. Lawler,et al. Accurate models of collisions in glow discharge simulations , 1994 .
[25] Antonio Marquina,et al. Local Piecewise Hyperbolic Reconstruction of Numerical Fluxes for Nonlinear Scalar Conservation Laws , 1994, SIAM J. Sci. Comput..
[26] W. Steckelmacher. Molecular gas dynamics and the direct simulation of gas flows , 1996 .
[27] K. P.,et al. HIGH RESOLUTION SCHEMES USING FLUX LIMITERS FOR HYPERBOLIC CONSERVATION LAWS * , 2012 .
[28] Robert Artebrant,et al. Limiter-Free Third Order Logarithmic Reconstruction , 2006, SIAM J. Sci. Comput..
[29] C. Angelopoulos. High resolution schemes for hyperbolic conservation laws , 1992 .