The effect of fiber properties on high performance alkali-activated slag/silica fume mortars

Abstract The effects of length and volume fraction of steel fibers on the mechanical properties and drying shrinkage behavior of steel fiber reinforced alkali-activated slag/silica fume (AASS) mortars were investigated within the scope of this research. Steel fibers with two different lengths of 6 mm and 13 mm, and four different volume fractions of 0.5%, 1.0%, 1.5% and 2.0% were used in the AASS mixtures. Also, a Portland cement (PC) based 1.5% steel fiber (13 mm length) reinforced mortar was prepared for comparison. Test results showed that mechanical performance of AASS mortars were significantly better than PC based control mortar. This superior performance of AASS mortar may be attributed to the higher bond properties between the fibers and AASS matrix compared to PC matrix. The mechanical performance of AASS improved dramatically parallel to the increment of fiber length from 6 mm to 13 mm. Also, the drying shrinkage of AASS mortars decreased with the increasing fiber dosage.

[1]  M. Ramli,et al.  High strength characteristics of cement mortar reinforced with hybrid fibres , 2011 .

[2]  C. Thaumaturgo,et al.  Fracture toughness of geopolymeric concretes reinforced with basalt fibers , 2005 .

[3]  Sidney Mindess,et al.  Fibre Reinforced Cementitious Composites , 1990 .

[4]  A. M. Pailleres,et al.  Influencia de las adiciones, inertes o activas, en las propiedades de los cementos , 1979 .

[5]  Antoine E. Naaman,et al.  Comparative flexural behavior of four fiber reinforced cementitious composites , 2008 .

[6]  Şemsi Yazıcı,et al.  Effect of aspect ratio and volume fraction of steel fiber on the mechanical properties of SFRC , 2007 .

[7]  M. Şahmaran,et al.  Hybrid fiber reinforced self-compacting concrete with a high-volume coarse fly ash , 2007 .

[8]  C. Shi,et al.  Alkali-Activated Cements and Concretes , 2003 .

[9]  S. Mindess,et al.  Fiber-reinforced cementitious materials , 1991 .

[10]  Francisca Puertas,et al.  Comportamiento de morteros de escoria activada alcalinamente con adición de fibras de carbón , 2007 .

[11]  Susan A. Bernal,et al.  Performance of an alkali-activated slag concrete reinforced with steel fibers , 2010 .

[12]  Caijun Shi,et al.  Interface between cement paste and quartz sand in alkali-activated slag mortars , 1998 .

[13]  Halit Yazici,et al.  Mechanical properties of reactive powder concrete containing high volumes of ground granulated blast furnace slag , 2010 .

[14]  L. Rizzuti,et al.  Experimental evaluation of fiber reinforced concrete fracture properties , 2010 .

[15]  Valeria Corinaldesi,et al.  Durable fiber reinforced self-compacting concrete , 2004 .

[16]  C. Thaumaturgo,et al.  Fibre reinforcement and fracture response in geopolymeric mortars , 2003 .

[17]  Hongxi Wang,et al.  Bonding and abrasion resistance of geopolymeric repair material made with steel slag , 2008 .

[18]  Francisca Puertas,et al.  MECHANICAL AND DURABLE BEHAVIOUR OF ALKALINE CEMENT MORTARS REINFORCED WITH POLYPROPYLENE FIBRES , 2003 .

[19]  M. Palacios,et al.  Morteros de escoria activada alcalinamente reforzados con fibra de vidrio AR: comportamiento y propiedades , 2006 .

[20]  Nemkumar Banthia,et al.  Toughness enhancement in steel fiber reinforced concrete through fiber hybridization , 2007 .