Pseudo-Chaotic Lossy Compressors for True Random Number Generation
暂无分享,去创建一个
Ljupco Kocarev | Tommaso Addabbo | Ada Fort | Valerio Vignoli | Santina Rocchi | L. Kocarev | V. Vignoli | A. Fort | S. Rocchi | T. Addabbo
[1] Massimo Alioto,et al. A feedback strategy to improve the entropy of a chaos-based random bit generator , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.
[2] Werner Schindler,et al. Evaluation Criteria for True (Physical) Random Number Generators Used in Cryptographic Applications , 2002, CHES.
[3] M. Mirzakhani,et al. Introduction to Ergodic theory , 2010 .
[4] Fritz Colonius,et al. Six Lectures on Dynamical Systems , 1996 .
[5] Ronen Shaltiel,et al. True Random Number Generators Secure in a Changing Environment , 2003, CHES.
[6] Tommaso Addabbo,et al. An Efficient and Accurate Method for the Estimation of Entropy and Other Dynamical Invariants for Piecewise Affine Chaotic Maps , 2009, Int. J. Bifurc. Chaos.
[7] Tommaso Addabbo,et al. Exploiting Chaotic Dynamics for a-d converter Testing , 2010, Int. J. Bifurc. Chaos.
[8] Massimo Alioto,et al. A Variability-Tolerant Feedback Technique for Throughput Maximization of Trbgs with Predefined Entropy , 2010, J. Circuits Syst. Comput..
[9] Nagarajan Ranganathan,et al. High-speed VLSI designs for Lempel-Ziv-based data compression , 1993 .
[10] Fabrizio Lombardi,et al. Compression of VLSI test data by arithmetic coding , 2004 .
[11] P. Walters. Introduction to Ergodic Theory , 1977 .
[12] Manuel Blum,et al. A Simple Unpredictable Pseudo-Random Number Generator , 1986, SIAM J. Comput..
[13] Fabrizio Lombardi,et al. Compression of VLSI test data by arithmetic coding , 2004, 19th IEEE International Symposium on Defect and Fault Tolerance in VLSI Systems, 2004. DFT 2004. Proceedings..
[14] Tommaso Addabbo,et al. Efficient implementation of pseudochaotic piecewise linear maps with high digitization accuracies , 2012, Int. J. Circuit Theory Appl..
[15] Alfred Menezes,et al. Handbook of Applied Cryptography , 2018 .
[16] Tommaso Addabbo,et al. Invariant Measures of Tunable Chaotic Sources: Robustness Analysis and Efficient Estimation , 2009, IEEE Transactions on Circuits and Systems I: Regular Papers.
[17] Massimo Alioto,et al. A Class of Maximum-Period Nonlinear Congruential Generators Derived From the Rényi Chaotic Map , 2007, IEEE Transactions on Circuits and Systems I: Regular Papers.
[18] M. Kieffer,et al. Vehicle tracking based on robust bounded-error nonlinear state estimation using interval analysis , 2004, Proceedings. 2004 International Conference on Information and Communication Technologies: From Theory to Applications, 2004..
[19] David Salomon,et al. Data Compression: The Complete Reference , 2006 .
[20] M. Mackey,et al. Chaos, Fractals, and Noise: Stochastic Aspects of Dynamics , 1998 .
[21] Hüseyin Koçak,et al. SHADOWING IN DISCRETE DYNAMICAL SYSTEMS , 1996 .
[22] Elaine B. Barker,et al. A Statistical Test Suite for Random and Pseudorandom Number Generators for Cryptographic Applications , 2000 .
[23] Cheng-Wen Wu,et al. Unified VLSI systolic array design for LZ data compression , 2001, IEEE Trans. Very Large Scale Integr. Syst..
[24] Abraham Boyarsky,et al. Laws of chaos , 1997 .
[25] Berk Sunar,et al. A Provably Secure True Random Number Generator with Built-In Tolerance to Active Attacks , 2007, IEEE Transactions on Computers.
[26] Markus Jakobsson,et al. How to turn loaded dice into fair coins , 2000, IEEE Trans. Inf. Theory.
[27] P. Elias. The Efficient Construction of an Unbiased Random Sequence , 1972 .
[28] P. L'Ecuyer,et al. About polynomial-time “unpredictable” generators , 1989, WSC '89.
[29] L. Kocarev,et al. Chaos-based random number generators-part I: analysis [cryptography] , 2001 .
[30] Jacob Ziv,et al. The Universal LZ77 Compression Algorithm Is Essentially Optimal for Individual Finite-Length $N$-Blocks , 2009, IEEE Transactions on Information Theory.