An examination of alkali-exchanged BEA zeolites as possible Lewis-acid catalysts

[1]  R. Gorte,et al.  Structure–activity relationships on metal-oxides: alcohol dehydration , 2014 .

[2]  D. Vlachos,et al.  The effect of oxide acidity on HMF etherification , 2014 .

[3]  R. Griffin,et al.  A continuous flow strategy for the coupled transfer hydrogenation and etherification of 5-(hydroxymethyl)furfural using Lewis acid zeolites. , 2014, ChemSusChem.

[4]  S. Aoyagi,et al.  Kinetic study of the Diels-Alder reaction of Li⁺@C₆₀ with cyclohexadiene: greatly increased reaction rate by encapsulated Li⁺. , 2014, Journal of the American Chemical Society.

[5]  Mark E. Davis,et al.  Active Sites in Sn-Beta for Glucose Isomerization to Fructose and Epimerization to Mannose , 2014 .

[6]  B. Yan,et al.  Sustainable production of acrylic acid: alkali-ion exchanged beta zeolite for gas-phase dehydration of lactic acid. , 2014, ChemSusChem.

[7]  S. Zones,et al.  Acid strength and solvation in catalysis by MFI zeolites and effects of the identity, concentration and location of framework heteroatoms , 2014 .

[8]  D. Vlachos,et al.  Cascade of Liquid‐Phase Catalytic Transfer Hydrogenation and Etherification of 5‐Hydroxymethylfurfural to Potential Biodiesel Components over Lewis Acid Zeolites , 2014 .

[9]  Mark E. Davis,et al.  Monosaccharide and disaccharide isomerization over Lewis acid sites in hydrophobic and hydrophilic molecular sieves , 2013 .

[10]  Michikazu Hara,et al.  Titania as an Early Transition Metal Oxide with a High Density of Lewis Acid Sites Workable in Water , 2013 .

[11]  Mark E. Davis,et al.  Titanium-Beta Zeolites Catalyze the Stereospecific Isomerization of d-Glucose to l-Sorbose via Intramolecular C5–C1 Hydride Shift , 2013 .

[12]  R. Gorte,et al.  Probing Lewis Acid Sites in Sn-Beta Zeolite , 2013 .

[13]  Q. Xin,et al.  Heterogeneous ceria catalyst with water-tolerant Lewis acidic sites for one-pot synthesis of 1,3-diols via Prins condensation and hydrolysis reactions. , 2013, Journal of the American Chemical Society.

[14]  A. K. Patra,et al.  Biopolymer templated porous TiO2: An efficient catalyst for the conversion of unutilized sugars derived from hemicellulose , 2012 .

[15]  Rajeev S. Assary,et al.  Metalloenzyme-like catalyzed isomerizations of sugars by Lewis acid zeolites , 2012, Proceedings of the National Academy of Sciences.

[16]  Y. Pagán-Torres,et al.  Sn-Beta catalysed conversion of hemicellulosic sugars , 2012 .

[17]  J. Dumesic,et al.  Liquid-phase catalytic transfer hydrogenation and cyclization of levulinic acid and its esters to γ-valerolactone over metal oxide catalysts. , 2011, Chemical communications.

[18]  Mark E. Davis,et al.  Activation of Carbonyl-Containing Molecules with Solid Lewis Acids in Aqueous Media , 2011 .

[19]  K. Shimizu,et al.  Toward a rational control of solid acid catalysis for green synthesis and biomass conversion , 2011 .

[20]  T. Tago,et al.  Selective production of isobutylene from acetone over alkali metal ion-exchanged BEA zeolites , 2011 .

[21]  A. Corma,et al.  Chemicals from biomass: Etherification of 5-hydroxymethyl-2-furfural (HMF) into 5,5′(oxy-bis(methylene))bis-2-furfural (OBMF) with solid catalysts , 2010 .

[22]  Peng Sun,et al.  NaY Zeolites Catalyze Dehydration of Lactic Acid to Acrylic Acid: Studies on the Effects of Anions in Potassium Salts , 2010 .

[23]  Manuel Moliner,et al.  Tin-containing zeolites are highly active catalysts for the isomerization of glucose in water , 2010, Proceedings of the National Academy of Sciences.

[24]  J. Gal,et al.  Lewis Basicity and Affinity Scales: Data and Measurement , 2010 .

[25]  C. Laurence,et al.  Lewis Basicity and Affinity Scales , 2009 .

[26]  P. Leflaive,et al.  Extraframework cation distributions in X and Y faujasite zeolites: A review , 2008 .

[27]  R. A. Santen,et al.  A Periodic DFT Study of N2O4 Disproportionation on Alkali-Exchanged Zeolites X , 2008 .

[28]  Robert J. Davis,et al.  Hydrocarbon oxidation and aldol condensation over basic zeolite catalysts , 2006 .

[29]  A. Corma,et al.  Determination of the catalytically active oxidation Lewis acid sites in Sn-beta zeolites, and their optimisation by the combination of theoretical and experimental studies , 2005 .

[30]  A. Corma,et al.  Water-resistant solid Lewis acid catalysts: Meerwein–Ponndorf–Verley and Oppenauer reactions catalyzed by tin-beta zeolite , 2003 .

[31]  K. Klabunde,et al.  Characterization of aerogel prepared high-surface-area alumina: in situ FTIR study of dehydroxylation and pyridine adsorption. , 2002, Chemistry.

[32]  R. Gorte,et al.  An Examination of Brønsted Acid Sites in H-[Fe]ZSM-5 for Olefin Oligomerization and Adsorption , 2002 .

[33]  R. Gorte,et al.  A calorimetric investigation of CO, N2, and O2 in alkali-exchanged MFI , 2000 .

[34]  R. Gorte What do we know about the acidity of solid acids? , 1999 .

[35]  R. Gorte,et al.  Design parameters for the construction and operation of heat-flow calorimeters , 1998 .

[36]  R. Gorte,et al.  Calorimetric and FTIR Studies of Acetonitrile on H-[Fe]ZSM-5 and H-[Al]ZSM-5 , 1998 .

[37]  R. Gorte,et al.  Calorimetric Study of Alcohol and Nitrile Adsorption Complexes in H-ZSM-5 , 1997 .

[38]  D. Barthomeuf,et al.  Basic zeolites : Characterization and uses in adsorption and catalysis , 1996 .

[39]  D. Olson The crystal structure of dehydrated NaX , 1995 .

[40]  R. Gorte,et al.  Heats of adsorption for ammonia and pyridine in H-ZSM-5: evidence for identical Brønsted-acid sites , 1994 .

[41]  R. Gorte,et al.  A calorimetric study of simple bases in H-ZSM-5: a comparison with gas-phase and solution-phase acidities , 1993 .

[42]  S. Kaliaguine,et al.  Propene aromatization over alkali-exchanged ZSM-5 zeolites , 1993 .

[43]  H. Nakabayashi Properties of Acid Sites on TiO2–SiO2 and TiO2–Al2O3 Mixed Oxides Measured by Infrared Spectroscopy , 1992 .

[44]  R. Gorte,et al.  Stoichiometric adsorption complexes in H-ZSM-5 , 1988 .

[45]  J. W. Ward The nature of active sites on zeolites: III. The alkali and alkaline earth ion-exchanged forms , 1968 .