A practical iterative PID tuning method for mechanical systems using parameter chart

ABSTRACT In this paper, we propose a method of iterative proportional-integral-derivative parameter tuning for mechanical systems that possibly possess hidden mechanical resonances, using a parameter chart which visualises the closed-loop characteristics in a 2D parameter space. We employ a hypothetical assumption that the considered mechanical systems have their upper limit of the derivative feedback gain, from which the feasible region in the parameter chart becomes fairly reduced and thus the gain selection can be extremely simplified. Then, a two-directional parameter search is carried out within the feasible region in order to find the best set of parameters. Experimental results show the validity of the assumption used and the proposed parameter tuning method.

[1]  Bidyadhar Subudhi,et al.  Inverse optimal self-tuning PID control design for an autonomous underwater vehicle , 2017, Int. J. Syst. Sci..

[2]  Daniel Hissel,et al.  Enhanced Servo-Control Performance of Dual-Mass Systems , 2007, IEEE Transactions on Industrial Electronics.

[3]  Rafael Kelly,et al.  A tuning procedure for stable PID control of robot manipulators , 1995, Robotica.

[4]  Wen Tan,et al.  Comparison of some well-known PID tuning formulas , 2006, Comput. Chem. Eng..

[5]  Boris T. Polyak,et al.  Stability regions in the parameter space: D-decomposition revisited , 2006, Autom..

[6]  Il Hong Suh,et al.  Performance and H∞ optimality of PID trajectory tracking controller for Lagrangian systems , 2001, IEEE Trans. Robotics Autom..

[7]  Wim Michiels,et al.  Stability, Control, and Computation for Time-Delay Systems - An Eigenvalue-Based Approach (2. ed.) , 2014, Advances in design and control.

[8]  J. Doyle,et al.  Essentials of Robust Control , 1997 .

[9]  Kouhei Ohnishi,et al.  A Practical Tuning Method for the Robust PID Controller with Velocity Feed-Back , 2015 .

[10]  Li Yu,et al.  H∞ robust design of PID controllers for arbitrary-order LTI systems with time delay , 2011, IEEE Conference on Decision and Control and European Control Conference.

[11]  Weng Khuen Ho,et al.  Relay auto-tuning of PID controllers using iterative feedback tuning , 2003, Autom..

[12]  J. G. Ziegler,et al.  Optimum Settings for Automatic Controllers , 1942, Journal of Fluids Engineering.

[13]  YangQuan Chen,et al.  Fractional order control - A tutorial , 2009, 2009 American Control Conference.

[14]  John Chiasson,et al.  Modeling and High Performance Control of Electric Machines , 2005 .

[15]  Jie Chen,et al.  On stability crossing curves for general systems with two delays , 2004 .

[16]  Víctor Santibáñez,et al.  A new tuning procedure for nonlinear PID global regulators with bounded torques for rigid robots , 2014, Robotica.

[17]  Masami Saeki Properties of Stabilizing PID Gain Set in Parameter Space , 2007, IEEE Transactions on Automatic Control.

[18]  Igor Podlubny,et al.  Fractional-order systems and PI/sup /spl lambda//D/sup /spl mu//-controllers , 1999 .

[19]  Guoguang Zhang Speed control of two-inertia system by PI/PID control , 2000, IEEE Trans. Ind. Electron..

[20]  I. Podlubny Fractional-order systems and PIλDμ-controllers , 1999, IEEE Trans. Autom. Control..

[21]  Johan Efberg,et al.  YALMIP : A toolbox for modeling and optimization in MATLAB , 2004 .

[22]  Achim Kienle,et al.  Auto-Tuning of Multivariable PID Controllers Using Iterative Feedback Tuning , 2012, Autom..

[23]  M. H. Raibert,et al.  Manipulator control using the configuration space method , 1978 .

[24]  Aidan O'Dwyer,et al.  Handbook of PI and PID controller tuning rules , 2003 .

[25]  Jingqing Han,et al.  From PID to Active Disturbance Rejection Control , 2009, IEEE Trans. Ind. Electron..

[26]  Farshad Merrikh-Bayat,et al.  Discrete-time fractional-order PID controller: Definition, tuning, digital realization and some applications , 2014, International Journal of Control, Automation and Systems.

[27]  Antonio Visioli,et al.  Practical PID Control , 2006 .

[28]  Min-Sen Chiu,et al.  A one-step tuning method for PID controllers with robustness specification using plant step-response data , 2014 .

[29]  R. Firoozian Feedback Control Theory , 2009 .

[30]  Fernando Morilla,et al.  Multivariable PID control by decoupling , 2016, Int. J. Syst. Sci..

[31]  Pedro Luis Dias Peres,et al.  Robust PI and PID design for first- and second-order processes with zeros, time-delay and structured uncertainties , 2017, Int. J. Syst. Sci..

[32]  Maolin Jin,et al.  Variable PID Gain Tuning Method Using Backstepping Control With Time-Delay Estimation and Nonlinear Damping , 2014, IEEE Transactions on Industrial Electronics.

[33]  J. Lofberg,et al.  YALMIP : a toolbox for modeling and optimization in MATLAB , 2004, 2004 IEEE International Conference on Robotics and Automation (IEEE Cat. No.04CH37508).

[34]  Yun Li,et al.  PID control system analysis, design, and technology , 2005, IEEE Transactions on Control Systems Technology.

[35]  Ramon Vilanova,et al.  PID control in terms of robustness/performance and servo/regulator trade-offs: A unifying approach to balanced autotuning , 2013 .

[36]  Wan Kyun Chung,et al.  Design of a Robust H∞ PID Control for Industrial Manipulators , 2000 .

[37]  Irinel-Constantin Morarescu,et al.  Stability crossing boundaries and fragility characterization of PID controllers for SISO systems with I/O delays , 2011, Proceedings of the 2011 American Control Conference.

[38]  H. T,et al.  The future of PID control , 2001 .

[39]  Yuxin Su,et al.  PID control for global finite-time regulation of robotic manipulators , 2017, Int. J. Syst. Sci..