Progress in Functionalized Biodegradable Polyesters

This chapter provides an overview of the current approaches to functionalized biodegradable polyesters, mainly PLA (polylactide), PGA (polyglycolide), and PCL (polycaprolactone). The general properties of biodegradable polyesters and their range of applications are discussed, and the need for functionalization of these materials, especially in regard to their relevance in the biomedical field, is highlighted. Functionalization approaches for PLA, PGA, and PCL are then introduced, and the polymer chemistry methodologies are discussed in detail.

[1]  Z. Su,et al.  A novel sustained-release formulation of recombinant human growth hormone and its pharmacokinetic, pharmacodynamic and safety profiles. , 2012, Molecular pharmaceutics.

[2]  Qing Cai,et al.  Enhancing the cell affinity of macroporous poly(L-lactide) cell scaffold by a convenient surface modification method , 2003 .

[3]  Jouko Yliruusi,et al.  Sugar End-Capped Poly-d,l-lactides as Excipients in Oral Sustained Release Tablets , 2009, AAPS PharmSciTech.

[4]  T. James,et al.  Well-controlled synthesis of boronic-acid functionalised poly(lactide)s: a versatile platform for biocompatible polymer conjugates and sensors , 2012 .

[5]  Ali Khademhosseini,et al.  Effect of biodegradation and de novo matrix synthesis on the mechanical properties of valvular interstitial cell-seeded polyglycerol sebacate-polycaprolactone scaffolds. , 2013, Acta biomaterialia.

[6]  Jonathan Woodward,et al.  Fuels and chemicals from biomass , 1997 .

[7]  Liuxi Chen,et al.  Self‐Catalysis of Phthaloylchitosan for Graft Copolymerization of ε‐Caprolactone with Chitosan , 2006 .

[8]  M. Vert,et al.  Biomedical polymers from chiral lactides and functional lactones: Properties and applications , 1986 .

[9]  Fang-chyou Chiu,et al.  Synthesis and characterization of amphiphilic PLA-(PαN3CL-g-PBA) copolymers by ring-opening polymerization and click reaction , 2012 .

[10]  Dawn Pedrotty,et al.  Blood vessels engineered from human cells , 2005, The Lancet.

[11]  E. Fortunati,et al.  Biodegradable polymer matrix nanocomposites for tissue engineering: A review , 2010 .

[12]  D. Hutmacher,et al.  The return of a forgotten polymer : Polycaprolactone in the 21st century , 2009 .

[13]  Abhinav Vaidya,et al.  Production and Recovery of Lactic Acid for Polylactide—An Overview , 2005 .

[14]  Mathieu J-L Tschan,et al.  Synthesis of biodegradable polymers from renewable resources , 2012 .

[15]  H. Yamane,et al.  Ring-opening polymerization of 3(S)-[(benzyloxycarbonyl)methyl]-1,4-dioxane-2,5-dione: a new route to a poly(.alpha.-hydroxy acid) with pendant carboxyl groups , 1988 .

[16]  Anders Axelsson,et al.  The mechanisms of drug release in poly(lactic-co-glycolic acid)-based drug delivery systems--a review. , 2011, International journal of pharmaceutics.

[17]  A. Albertsson,et al.  Electroactive Hydrophilic Polylactide Surface by Covalent Modification with Tetraaniline , 2012 .

[18]  Michel Vert,et al.  Aliphatic polyesters: great degradable polymers that cannot do everything. , 2005, Biomacromolecules.

[19]  Jeffrey A. Hubbell,et al.  Bioerodible hydrogels based on photopolymerized poly(ethylene glycol)-co-poly(.alpha.-hydroxy acid) diacrylate macromers , 1993 .

[20]  J. Hedrick,et al.  Two General Methods for the Synthesis of Thiol-Functional Polycaprolactones , 1999 .

[21]  X. C. Yang,et al.  Functionalized Polylactide Film Surfaces via Surface-Initiated ATRP , 2011 .

[22]  Huicui Yang,et al.  Versatile Synthesis of Functional Biodegradable Polymers by Combining Ring-Opening Polymerization and Postpolymerization Modification via Michael-Type Addition Reaction , 2010 .

[23]  R. Adhikari,et al.  Biodegradable synthetic polymers for tissue engineering. , 2003, European cells & materials.

[24]  Chris Somerville,et al.  Production of Polyhydroxyalkanoates, a Family of Biodegradable Plastics and Elastomers, in Bacteria and Plants , 1995, Bio/Technology.

[25]  Elliot L Chaikof,et al.  Biomaterials for vascular tissue engineering. , 2010, Regenerative medicine.

[26]  Seong Ihl Woo,et al.  Surface modification of poly(glycolic acid) (PGA) for biomedical applications. , 2003, Journal of pharmaceutical sciences.

[27]  Jay C. Sy,et al.  Towards developing surface eroding poly(α-hydroxy acids) , 2006 .

[28]  J. Planell,et al.  Enhanced cell-material interactions through the biofunctionalization of polymeric surfaces with engineered peptides. , 2013, Biomacromolecules.

[29]  Pauline M Doran,et al.  Chondrogenic differentiation of human adipose-derived stem cells in polyglycolic acid mesh scaffolds under dynamic culture conditions. , 2010, Biomaterials.

[30]  R Langer,et al.  Functional arteries grown in vitro. , 1999, Science.

[31]  P. Degée,et al.  Regioselective end‐functionalization of polylactide oligomers with D‐glucose and D‐galactose , 2003 .

[32]  V. Shastri,et al.  Synthesis and characterization of functionalized poly(ɛ‐caprolactone) , 2013 .

[33]  R. Molloy,et al.  Synthesis and characterization of a random terpolymer of L-lactide, ε-caprolactone and glycolide , 2001 .

[34]  Robert Langer,et al.  Photopolymerizable degradable polyanhydrides with osteocompatibility , 1999, Nature Biotechnology.

[35]  Suming Li,et al.  Synthesis and Characterization of Block Copolymers of ε‐Caprolactone and DL‐Lactide Initiated by Ethylene Glycol or Poly(ethylene glycol) , 2003 .

[36]  Shen‐guo Wang,et al.  Synthesis and properties of ABA-type triblock copolymers of poly(glycolide-co-caprolactone) (A) and poly(ethylene glycol) (B) , 2002 .

[37]  V. Torchilin,et al.  Biodegradable long-circulating polymeric nanospheres. , 1994, Science.

[38]  M. Vert,et al.  Lactic acid-based functionalized polymers via copolymerization and chemical modification. , 2004, Macromolecular bioscience.

[39]  R. Mülhaupt Green Polymer Chemistry and Bio‐based Plastics: Dreams and Reality , 2013 .

[40]  J. Richie,et al.  Targeted nanoparticle-aptamer bioconjugates for cancer chemotherapy in vivo. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[41]  C. Pillai,et al.  Review Paper: Absorbable Polymeric Surgical Sutures: Chemistry, Production, Properties, Biodegradability, and Performance , 2010, Journal of biomaterials applications.

[42]  T. Park,et al.  Biodegradable Polymer Nanocylinders Fabricated by Transverse Fragmentation of Electrospun Nanofibers through Aminolysis , 2008 .

[43]  Jung-Ki Park,et al.  Synthesis and Characterization of Poly(ethylene glycol) grafted Poly(ε-Caprolactone) , 2006 .

[44]  J. Rieger,et al.  Versatile functionalization and grafting of poly(epsilon-caprolactone) by Michael-type addition. , 2005, Chemical communications.

[45]  A. Anscombe,et al.  The use of a new absorbable suture material (polyglycolic acid) in general surgery , 1970, The British journal of surgery.

[46]  J. Seppälä,et al.  Modification of poly(L-lactides) by blending: Mechanical and hydrolytic behavior , 1996 .

[47]  Christophe Detrembleur,et al.  Novel Aliphatic Polyesters Based on Functional Cyclic (Di)Esters , 2003 .

[48]  R. Marchessault,et al.  Bacterial polyesters: biosynthesis, biodegradable plastics and biotechnology. , 2005, Biomacromolecules.

[49]  C. M. Agrawal,et al.  Orthopaedic applications for PLA-PGA biodegradable polymers. , 1998, Arthroscopy : the journal of arthroscopic & related surgery : official publication of the Arthroscopy Association of North America and the International Arthroscopy Association.

[50]  J. Feijen,et al.  Synthesis of biodegradable polyesteramides with pendant functional groups , 1992 .

[51]  F. Wang,et al.  Synthesis, characterization, and self-assembly of linear poly(ethylene oxide)-block-poly(propylene oxide)-block-poly(ε-caprolactone) (PEO-PPO-PCL) copolymers. , 2013, Journal of colloid and interface science.

[52]  Sudesh Kumar Yadav,et al.  Biodegradable polymeric nanoparticles based drug delivery systems. , 2010, Colloids and surfaces. B, Biointerfaces.

[53]  S. Blanquer,et al.  Aminated PCL‐based copolymers by chemical modification of poly(α‐iodo‐ε‐caprolactone‐co‐ε‐caprolactone) , 2009 .

[54]  R. Mülhaupt,et al.  Valproate release from polycaprolactone implants prepared by 3D-bioplotting. , 2011, Die Pharmazie.

[55]  E. Edelman,et al.  Stent Thrombogenicity Early in High-Risk Interventional Settings Is Driven by Stent Design and Deployment and Protected by Polymer-Drug Coatings , 2011, Circulation.

[56]  J. E. Mark Polymer Data Handbook , 2009 .

[57]  Ann-Christine Albertsson,et al.  Recent developments in ring opening polymerization of lactones for biomedical applications. , 2003, Biomacromolecules.

[58]  Robert Langer,et al.  Synthesis and RGD peptide modification of a new biodegradable copolymer: poly(lactic acid-co-lysine) , 1993 .

[59]  J. Xie,et al.  Peptide-conjugated biodegradable nanoparticles as a carrier to target paclitaxel to tumor neovasculature. , 2010, Biomaterials.

[60]  W. Thielemans,et al.  Synthesis of polycaprolactone: a review. , 2009, Chemical Society reviews.

[61]  M C Davies,et al.  Spatially controlled cell engineering on biodegradable polymer surfaces , 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[62]  A. Laschewsky,et al.  Optimization of the property profile of poly‐L‐lactide by synthesis of PLLA‐polystyrene–block copolymers , 2013 .

[63]  Young Baek Kim,et al.  Poly(β-hydroxyalkanoate) copolymers containing brominated repeating units produced by Pseudomonas oleovorans , 1992 .

[64]  Brian J. Tighe,et al.  A review of biodegradable polymers: uses, current developments in the synthesis and characterization of biodegradable polyesters, blends of biodegradable polymers and recent advances in biodegradation studies , 1998 .

[65]  T. Satoh,et al.  Synthesis of block and end‐functionalized polyesters by triflimide‐catalyzed ring‐opening polymerization of ε‐caprolactone, 1,5‐dioxepan‐2‐one, and rac‐lactide , 2013 .

[66]  Gregory L. Baker,et al.  “Clickable” Polyglycolides: Tunable Synthons for Thermoresponsive, Degradable Polymers , 2008 .

[67]  P. Dubois,et al.  Poly(?-caprolactone-b-glycolide) and poly(D,L-lactide-b-glycolide) diblock copolyesters: Controlled synthesis, characterization, and colloidal dispersions , 2001 .

[68]  Rahul M. Rasal,et al.  Effect of the photoreaction solvent on surface and bulk properties of poly(lactic acid) and poly(hydroxyalkanoate) films. , 2008, Journal of biomedical materials research. Part B, Applied biomaterials.

[69]  Marcus Weck,et al.  Functional lactide monomers: methodology and polymerization. , 2006, Biomacromolecules.

[70]  Todd Emrick,et al.  PEG- and peptide-grafted aliphatic polyesters by click chemistry. , 2005, Journal of the American Chemical Society.

[71]  Tao He,et al.  Immobilization of biomacromolecules onto aminolyzed poly(L-lactic acid) toward acceleration of endothelium regeneration. , 2004, Tissue engineering.

[72]  W. H. Carothers,et al.  STUDIES OF POLYMERIZATION AND RING FORMATION. X. THE REVERSIBLE POLYMERIZATION OF SIX-MEMBERED CYCLIC ESTERS , 1932 .

[73]  X. Zhu,et al.  Controllable ring‐opening copolymerization of L‐lactide and (3S)‐benzyloxymethyl‐(6S)‐methyl‐morpholine‐2,5‐dione initiated by a biogenic compound creatinine acetate , 2012 .

[74]  Robert Langer,et al.  Nanoparticle delivery of cancer drugs. , 2012, Annual review of medicine.

[75]  J. Rieger,et al.  New prospects for the grafting of functional groups onto aliphatic polyesters. Ring-opening polymerization of α- or γ-substituted ε-caprolactone followed by chemical derivatization of the substituents , 2006 .