Proton-coupled dynamics in lactose permease.

Lactose permease of Escherichia coli (LacY) catalyzes symport of a galactopyranoside and an H⁺ via an alternating access mechanism. The transition from an inward- to an outward-facing conformation of LacY involves sugar-release followed by deprotonation. Because the transition depends intimately upon the dynamics of LacY in a bilayer environment, molecular dynamics (MD) simulations may be the only means of following the accompanying structural changes in atomic detail. Here, we describe MD simulations of wild-type apo LacY in phosphatidylethanolamine (POPE) lipids that features two protonation states of the critical Glu325. While the protonated system displays configurational stability, deprotonation of Glu325 causes significant structural rearrangements that bring into proximity side chains important for H⁺ translocation and sugar binding and closes the internal cavity. Moreover, protonated LacY in phosphatidylcholine (DMPC) lipids shows that the observed dynamics are lipid-dependent. Together, the simulations describe early dynamics of the inward-to-outward transition of LacY that agree well with experimental data.

[1]  T. Darden,et al.  A smooth particle mesh Ewald method , 1995 .

[2]  H. Kaback,et al.  Transmembrane helix tilting and ligand-induced conformational changes in the lactose permease determined by site-directed chemical crosslinking in situ. , 1998, Journal of Molecular Biology.

[3]  B. Wallace,et al.  The pore dimensions of gramicidin A. , 1993, Biophysical journal.

[4]  K Schulten,et al.  VMD: visual molecular dynamics. , 1996, Journal of molecular graphics.

[5]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[6]  M. Bogdanov,et al.  A polytopic membrane protein displays a reversible topology dependent on membrane lipid composition , 2002, The EMBO journal.

[7]  H. Kaback,et al.  Sugar binding induces the same global conformational change in purified LacY as in the native bacterial membrane , 2010, Proceedings of the National Academy of Sciences.

[8]  H. Gong,et al.  Structure of a fucose transporter in an outward-open conformation , 2010, Nature.

[9]  H. Kaback,et al.  The kamikaze approach to membrane transport , 2001, Nature Reviews Molecular Cell Biology.

[10]  H. Kaback,et al.  Structure and mechanism of the lactose permease. , 2005, Comptes rendus biologies.

[11]  M. G. Madej,et al.  Helix dynamics in LacY: helices II and IV. , 2010, Journal of molecular biology.

[12]  Jan H. Jensen,et al.  PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. , 2011, Journal of chemical theory and computation.

[13]  Z. Guan,et al.  Plasticity of lipid-protein interactions in the function and topogenesis of the membrane protein lactose permease from Escherichia coli , 2010, Proceedings of the National Academy of Sciences.

[14]  H. Kaback,et al.  Functional interactions between putative intramembrane charged residues in the lactose permease of Escherichia coli. , 1992, Proceedings of the National Academy of Sciences of the United States of America.

[15]  Lan Guan,et al.  An approach to membrane protein structure without crystals , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[16]  E. Tajkhorshid,et al.  Simulation of spontaneous substrate binding revealing the binding pathway and mechanism and initial conformational response of GlpT. , 2010, Biochemistry.

[17]  S. Iwata,et al.  Structural determination of wild-type lactose permease , 2007, Proceedings of the National Academy of Sciences.

[18]  H. Kaback,et al.  Residues in the H+ translocation site define the pKa for sugar binding to LacY. , 2009, Biochemistry.

[19]  Alexander D. MacKerell,et al.  All-atom empirical potential for molecular modeling and dynamics studies of proteins. , 1998, The journal of physical chemistry. B.

[20]  H. Kaback,et al.  Interaction between residues Glu269 (helix VIII) and His322 (helix X) of the lactose permease of Escherichia coli is essential for substrate binding. , 1997, Biochemistry.

[21]  H. Kaback,et al.  The lipid bilayer determines helical tilt angle and function in lactose permease of Escherichia coli. , 1997, Proceedings of the National Academy of Sciences of the United States of America.

[22]  S. Iwata,et al.  Structure and Mechanism of the Lactose Permease of Escherichia coli , 2003, Science.

[23]  Klaus Schulten,et al.  Sugar binding and protein conformational changes in lactose permease. , 2006, Biophysical journal.

[24]  H. Kaback,et al.  Cys‐scanning mutagenesis: a novel approach to structure—function relationships in polytopic membrane proteins , 1998, FASEB journal : official publication of the Federation of American Societies for Experimental Biology.

[25]  Alexander D. MacKerell,et al.  Update of the CHARMM all-atom additive force field for lipids: validation on six lipid types. , 2010, The journal of physical chemistry. B.

[26]  H. Kaback,et al.  Arg-302 facilitates deprotonation of Glu-325 in the transport mechanism of the lactose permease from Escherichia coli , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[27]  M. L. Ujwal,et al.  Role of glutamate-269 in the lactose permease of Escherichia coli. , 1994, Molecular membrane biology.

[28]  M. Sawaya,et al.  Crystal structure of lactose permease in complex with an affinity inactivator yields unique insight into sugar recognition , 2011, Proceedings of the National Academy of Sciences.

[29]  H. Kaback,et al.  Electrophysiological characterization of LacY , 2009, Proceedings of the National Academy of Sciences.

[30]  O. Jardetzky,et al.  Simple Allosteric Model for Membrane Pumps , 1966, Nature.

[31]  P. Kollman,et al.  Settle: An analytical version of the SHAKE and RATTLE algorithm for rigid water models , 1992 .

[32]  Bernard R Brooks,et al.  Probing the periplasmic-open state of lactose permease in response to sugar binding and proton translocation. , 2010, Journal of molecular biology.

[33]  S. Iwata,et al.  Structural evidence for induced fit and a mechanism for sugar/H+ symport in LacY , 2006, The EMBO journal.

[34]  C. Altenbach,et al.  Sugar binding induces an outward facing conformation of LacY , 2007, Proceedings of the National Academy of Sciences.

[35]  Sebastian Radestock,et al.  The alternating-access mechanism of MFS transporters arises from inverted-topology repeats. , 2011, Journal of molecular biology.

[36]  S. White,et al.  Rhomboid protease dynamics and lipid interactions. , 2009, Structure.

[37]  T. Darden,et al.  Particle mesh Ewald: An N⋅log(N) method for Ewald sums in large systems , 1993 .

[38]  H. Kaback,et al.  Cysteine scanning mutagenesis of putative transmembrane helices IX and X in the lactose permease of Escherichia coli , 1993, Protein science : a publication of the Protein Society.

[39]  H. Jung,et al.  Dynamics of lactose permease of Escherichia coli determined by site-directed fluorescence labeling. , 1994, Biochemistry.

[40]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[41]  V. Kasho,et al.  Sequence alignment and homology threading reveals prokaryotic and eukaryotic proteins similar to lactose permease. , 2006, Journal of molecular biology.

[42]  M. Klein,et al.  Constant pressure molecular dynamics algorithms , 1994 .

[43]  H. Kaback,et al.  Helices VII and X in the lactose permease of Escherichia coli: proximity and ligand-induced distance changes. , 2002, Journal of molecular biology.

[44]  H. Kaback,et al.  A mutation in the lactose permease of Escherichia coli that decreases conformational flexibility and increases protein stability. , 2003, Biochemistry.

[45]  H. Jung,et al.  Role of glycine residues in the structure and function of lactose permease, an Escherichia coli membrane transport protein. , 1995, Biochemistry.

[46]  W. L. Jorgensen,et al.  Comparison of simple potential functions for simulating liquid water , 1983 .

[47]  H. Jung,et al.  Use of site-directed fluorescence labeling to study proximity relationships in the lactose permease of Escherichia coli. , 1993, Biochemistry.

[48]  I. Paulsen,et al.  Major Facilitator Superfamily , 1998, Microbiology and Molecular Biology Reviews.

[49]  H. Kaback,et al.  Conservation of residues involved in sugar/H(+) symport by the sucrose permease of Escherichia coli relative to lactose permease. , 2006, Journal of molecular biology.

[50]  Joseph L. Baker,et al.  Simulations of substrate transport in the multidrug transporter EmrD , 2012, Proteins.

[51]  Klaus Schulten,et al.  Generalized Verlet Algorithm for Efficient Molecular Dynamics Simulations with Long-range Interactions , 1991 .

[52]  H. Kaback,et al.  Cysteine-scanning mutagenesis of helix IV and the adjoining loops in the lactose permease of Escherichia coli: Glu126 and Arg144 are essential. off. , 1997, Biochemistry.

[53]  Lan Guan,et al.  Lessons from lactose permease. , 2006, Annual review of biophysics and biomolecular structure.

[54]  H. Kaback,et al.  Role of the charge pair aspartic acid-237-lysine-358 in the lactose permease of Escherichia coli. , 1993, Biochemistry.

[55]  B. Brooks,et al.  Constant pressure molecular dynamics simulation: The Langevin piston method , 1995 .

[56]  M. Sansom,et al.  Conformational change in an MFS protein: MD simulations of LacY. , 2007, Structure.