White matter basis for the hub-and-spoke semantic representation: evidence from semantic dementia

The ‘hub-and-spoke’ theory of semantic representation proposes that semantic knowledge is processed in a network comprising modality-specific regions connected to an amodal semantic hub. By studying semantic dementia, Chen et al. identify the semantic hub and its general and modality-specific white matter connections.

[1]  William W. Graves,et al.  Where is the semantic system? A critical review and meta-analysis of 120 functional neuroimaging studies. , 2009, Cerebral cortex.

[2]  Roy W Jones,et al.  Comprehension of concrete and abstract words in semantic dementia. , 2009, Neuropsychology.

[3]  T. Rogers,et al.  Where do you know what you know? The representation of semantic knowledge in the human brain , 2007, Nature Reviews Neuroscience.

[4]  Jessica A. Collins,et al.  Focal temporal pole atrophy and network degeneration in semantic variant primary progressive aphasia , 2017, Brain : a journal of neurology.

[5]  E. Jefferies,et al.  Anterior temporal lobes mediate semantic representation: Mimicking semantic dementia by using rTMS in normal participants , 2007, Proceedings of the National Academy of Sciences.

[6]  T. Rogers,et al.  The neural and computational bases of semantic cognition , 2016, Nature Reviews Neuroscience.

[7]  N. Makris,et al.  High angular resolution diffusion imaging reveals intravoxel white matter fiber heterogeneity , 2002, Magnetic resonance in medicine.

[8]  D. Neary,et al.  Knowledge of famous faces and names in semantic dementia. , 2004, Brain : a journal of neurology.

[9]  E. Tulving,et al.  Episodic and semantic memory , 1972 .

[10]  Yong He,et al.  The semantic anatomical network: Evidence from healthy and brain‐damaged patient populations , 2015, Human brain mapping.

[11]  B. Mesquita,et al.  Adjustment to Chronic Diseases and Terminal Illness Health Psychology : Psychological Adjustment to Chronic Disease , 2006 .

[12]  T. Shallice,et al.  Category specific semantic impairments. , 1998, Brain : a journal of neurology.

[13]  E. Tulving,et al.  Organization of memory. , 1973 .

[14]  H. Soininen,et al.  MR volumetric analysis of the human entorhinal, perirhinal, and temporopolar cortices. , 1998, AJNR. American journal of neuroradiology.

[15]  Guy B. Williams,et al.  What the left and right anterior fusiform gyri tell us about semantic memory. , 2010, Brain : a journal of neurology.

[16]  Guido Gainotti,et al.  Is the difference between right and left ATLs due to the distinction between general and social cognition or between verbal and non-verbal representations? , 2015, Neuroscience & Biobehavioral Reviews.

[17]  James L. McClelland,et al.  Structure and deterioration of semantic memory: a neuropsychological and computational investigation. , 2004, Psychological review.

[18]  A. Caramazza,et al.  White matter structural connectivity underlying semantic processing: evidence from brain damaged patients. , 2013, Brain : a journal of neurology.

[19]  E. Rolls,et al.  Selective Perceptual Impairments After Perirhinal Cortex Ablation , 2001, The Journal of Neuroscience.

[20]  Alan C. Evans,et al.  Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. , 2009, Cerebral cortex.

[21]  Matthew A. Lambon Ralph,et al.  Differential Contributions of Bilateral Ventral Anterior Temporal Lobe and Left Anterior Superior Temporal Gyrus to Semantic Processes , 2011, Journal of Cognitive Neuroscience.

[22]  Alex Martin GRAPES—Grounding representations in action, perception, and emotion systems: How object properties and categories are represented in the human brain , 2015, Psychonomic Bulletin & Review.

[23]  Jason D. Warren,et al.  Identification of environmental sounds and melodies in syndromes of anterior temporal lobe degeneration☆ , 2015, Journal of the Neurological Sciences.

[24]  Daniel Tranel,et al.  The left temporal pole is important for retrieving words for unique concrete entities , 2009, Aphasiology.

[25]  M. L. Lambon Ralph,et al.  Conceptual knowledge is underpinned by the temporal pole bilaterally: convergent evidence from rTMS. , 2009, Cerebral cortex.

[26]  J. Ahern,et al.  Remembering the Past , 2013, The Annals of pharmacotherapy.

[27]  L. Tyler,et al.  Object-Specific Semantic Coding in Human Perirhinal Cortex , 2014, The Journal of Neuroscience.

[28]  Pengfei Xu,et al.  PANDA: a pipeline toolbox for analyzing brain diffusion images , 2013, Front. Hum. Neurosci..

[29]  J. Hodges,et al.  Non-verbal semantic impairment in semantic dementia , 2000, Neuropsychologia.

[30]  Yanchao Bi,et al.  The Left Fusiform Gyrus is a Critical Region Contributing to the Core Behavioral Profile of Semantic Dementia , 2016, Front. Hum. Neurosci..

[31]  E. Bullmore,et al.  A Resilient, Low-Frequency, Small-World Human Brain Functional Network with Highly Connected Association Cortical Hubs , 2006, The Journal of Neuroscience.

[32]  M. A. Lambon Ralph,et al.  The inferior, anterior temporal lobes and semantic memory clarified: Novel evidence from distortion-corrected fMRI , 2010, Neuropsychologia.

[33]  Efstathios D. Gennatas,et al.  Predicting Regional Neurodegeneration from the Healthy Brain Functional Connectome , 2012, Neuron.

[34]  B. Miller,et al.  Anterior temporal lobe degeneration produces widespread network-driven dysfunction. , 2013, Brain : a journal of neurology.

[35]  Yanchao Bi,et al.  Motor knowledge is one dimension for concept organization: Further evidence from a Chinese semantic dementia case , 2011, Brain and Language.

[36]  Roy W Jones,et al.  The degraded concept representation system in semantic dementia: damage to pan-modal hub, then visual spoke. , 2012, Brain : a journal of neurology.

[37]  R. Laforce,et al.  Naming unique entities in the semantic variant of primary progressive aphasia and Alzheimer's disease: Towards a better understanding of the semantic impairment , 2017, Neuropsychologia.

[38]  L. Tyler,et al.  Binding crossmodal object features in perirhinal cortex. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[39]  Matthew A. Lambon Ralph,et al.  Neurocognitive insights on conceptual knowledge and its breakdown , 2014, Philosophical Transactions of the Royal Society B: Biological Sciences.

[40]  F. Dick,et al.  Voxel-based lesion–symptom mapping , 2003, Nature Neuroscience.

[41]  B. Miller,et al.  Classification of primary progressive aphasia and its variants , 2011, Neurology.

[42]  Thomas Dierks,et al.  Diverging Progression of Network Disruption and Atrophy in Alzheimer’s Disease and Semantic Dementia , 2016, Journal of Alzheimer's disease : JAD.

[43]  S. Folstein,et al.  "Mini-mental state". A practical method for grading the cognitive state of patients for the clinician. , 1975, Journal of psychiatric research.

[44]  M. Mesulam,et al.  Quantitative classification of primary progressive aphasia at early and mild impairment stages. , 2012, Brain : a journal of neurology.

[45]  Guy B. Williams,et al.  Absolute diffusivities define the landscape of white matter degeneration in Alzheimer's disease. , 2010, Brain : a journal of neurology.

[46]  A. Damasio,et al.  A role for left temporal pole in the retrieval of words for unique entities , 2001, Human brain mapping.

[47]  Emily J. Mayberry,et al.  Coherent concepts are computed in the anterior temporal lobes , 2010, Proceedings of the National Academy of Sciences.

[48]  N. Tzourio-Mazoyer,et al.  Automated Anatomical Labeling of Activations in SPM Using a Macroscopic Anatomical Parcellation of the MNI MRI Single-Subject Brain , 2002, NeuroImage.

[49]  Paul Hoffman,et al.  The Roles of Left Versus Right Anterior Temporal Lobes in Semantic Memory: A Neuropsychological Comparison of Postsurgical Temporal Lobe Epilepsy Patients , 2018, Cerebral cortex.

[50]  Leonard M. Freeman,et al.  A set of measures of centrality based upon betweenness , 1977 .

[51]  R. Adolphs,et al.  Neural systems behind word and concept retrieval , 2004, Cognition.

[52]  P. Jezzard,et al.  Correction for geometric distortion in echo planar images from B0 field variations , 1995, Magnetic resonance in medicine.

[53]  Massimo Filippi,et al.  Language networks in semantic dementia. , 2010, Brain : a journal of neurology.

[54]  A. Caramazza,et al.  The dissociation of color from form and function knowledge , 2001, Nature Neuroscience.

[55]  John Ashburner,et al.  A fast diffeomorphic image registration algorithm , 2007, NeuroImage.

[56]  Matthew A. Lambon Ralph,et al.  Neurocognitive insights on conceptual knowledge and its breakdown , 2014 .

[57]  P. V. van Zijl,et al.  Three‐dimensional tracking of axonal projections in the brain by magnetic resonance imaging , 1999, Annals of neurology.

[58]  Edward T. Bullmore,et al.  Efficiency and Cost of Economical Brain Functional Networks , 2007, PLoS Comput. Biol..

[59]  P. Garthwaite,et al.  Comparing patients' predicted test scores from a regression equation with their obtained scores: a significance test and point estimate of abnormality with accompanying confidence limits. , 2006, Neuropsychology.

[60]  Guy B. Williams,et al.  Atrophy, hypometabolism and white matter abnormalities in semantic dementia tell a coherent story. , 2011, Brain : a journal of neurology.

[61]  L. Saksida,et al.  Perirhinal cortex resolves feature ambiguity in complex visual discriminations , 2002, The European journal of neuroscience.

[62]  D. Schacter,et al.  Remembering the past to imagine the future: the prospective brain , 2007, Nature Reviews Neuroscience.

[63]  L. Saksida,et al.  Impairments in visual discrimination after perirhinal cortex lesions: testing ‘declarative’ vs. ‘perceptual‐mnemonic’ views of perirhinal cortex function , 2003, The European journal of neuroscience.

[64]  Zaizhu Han,et al.  Neural substrates of amodal and modality-specific semantic processing within the temporal lobe: A lesion-behavior mapping study of semantic dementia , 2019, Cortex.

[65]  James L. McClelland,et al.  Why Bilateral Damage Is Worse than Unilateral Damage to the Brain , 2013, Journal of Cognitive Neuroscience.

[66]  Yanchao Bi,et al.  Intrinsic functional network architecture of human semantic processing: Modules and hubs , 2016, NeuroImage.

[67]  B. Miller,et al.  The Neural Correlates of Verbal and Nonverbal Semantic Processing Deficits in Neurodegenerative Disease , 2009, Cognitive and behavioral neurology : official journal of the Society for Behavioral and Cognitive Neurology.

[68]  P. Hoffman,et al.  The Roles of Left Versus Right Anterior Temporal Lobes in Conceptual Knowledge: An ALE Meta-analysis of 97 Functional Neuroimaging Studies , 2015, Cerebral cortex.

[69]  Andrew J. Saykin,et al.  Optimization of seed density in DTI tractography for structural networks , 2012, Journal of Neuroscience Methods.

[70]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[71]  P. Hoffman,et al.  Graded specialization within and between the anterior temporal lobes , 2015, Annals of the New York Academy of Sciences.

[72]  Richard J. Binney,et al.  The ventral and inferolateral aspects of the anterior temporal lobe are crucial in semantic memory: evidence from a novel direct comparison of distortion-corrected fMRI, rTMS, and semantic dementia. , 2010, Cerebral cortex.

[73]  A. Caramazza,et al.  Brain Regions That Represent Amodal Conceptual Knowledge , 2013, The Journal of Neuroscience.

[74]  S. Skare,et al.  Readout-segmented EPI for rapid high resolution diffusion imaging at 3 T. , 2008, European journal of radiology.

[75]  Alan C. Evans,et al.  Neuronal Networks in Alzheimer's Disease , 2009, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[76]  D. Neary,et al.  Distinct patterns of olfactory impairment in Alzheimer's disease, semantic dementia, frontotemporal dementia, and corticobasal degeneration , 2007, Neuropsychologia.