Non-matchable distributive lattices

Based on an acyclic orientation of the Z -transformation graph, a finite distributive lattice (FDL for short) M ( G ) is established on the set of all 1-factors of a plane (weakly) elementary bipartite graph G . For an FDL L , if there exists a plane bipartite graph G such that L is isomorphic to M ( G ) , then L is called a matchable FDL. A natural question arises: Is every FDL a matchable FDL? In this paper we give a negative answer to this question. Further, we obtain a series of non-matchable FDLs by characterizing sub-structures of matchable FDLs with cut-elements.

[1]  Heping Zhang,et al.  Block Graphs of Z-transformation Graphs of Perfect Matchings of Plane Elementary Bipartite Graphs , 1999, Ars Comb..

[2]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[3]  Dwight Duffus,et al.  Graphs orientable as distributive lattices , 1983 .

[4]  Jean-Claude Fournier Combinatorics of perfect matchings in plane bipartite graphs and application to tilings , 2003, Theor. Comput. Sci..

[5]  Peter C. Fishburn,et al.  PARTIAL ORDERS OF DIMENSION 2, INTERVAL ORDERS AND INTERVAL GRAPHS, , 1970 .

[6]  W. Gasarch,et al.  Stable Marriage and its Relation to Other Combinatorial Problems : An Introduction to Algorithm Analysis , 2002 .

[7]  Heping Zhang,et al.  Z-transformation graphs of perfect matchings of plane bipartite graphs , 2004, Discret. Math..

[8]  Emden R. Gansner,et al.  On the lattice of order ideals of an up-down poset , 1982, Discret. Math..

[9]  Oliver Pretzel,et al.  On reorienting graphs by pushing down maximal vertices--II , 2003, Discret. Math..

[10]  Peter C. Fishburn,et al.  Partial orders of dimension 2 , 1972, Networks.

[11]  Heping Zhang,et al.  Fibonacci-like cubes as Z-transformation graphs , 2009, Discret. Math..

[12]  Reinhard Diestel,et al.  Graph Theory , 1997 .

[13]  Heping Zhang,et al.  Z-transformation graphs of maximum matchings of plane bipartite graphs , 2004, Discret. Appl. Math..

[14]  Milan Randić,et al.  Resonance in catacondensed benzenoid hydrocarbons , 1997 .

[15]  Norma Zagaglia Salvi,et al.  Alternating unimodal sequences of Whitney numbers , 2008, Ars Comb..

[16]  PETER CHE BOR LAM,et al.  A Distributive Lattice on the Set of Perfect Matchings of a Plane Bipartite Graph , 2003, Order.

[17]  Emanuele Munarini,et al.  On the Lucas cubes , 2001 .

[18]  Fuji Zhang,et al.  Z-transformation graphs of perfect matchings of hexagonal systems , 1988, Discret. Math..

[19]  Wen-Jing Hsu,et al.  Fibonacci Cubes-A New Interconnection Technology , 1993, IEEE Trans. Parallel Distributed Syst..

[20]  Heping Zhang,et al.  Direct Sum of Distributive Lattices on the Perfect Matchings of a Plane Bipartite Graph , 2010, Order.

[21]  Stefan Felsner,et al.  Lattice Structures from Planar Graphs , 2004, Electron. J. Comb..

[22]  Sandi Klavzar,et al.  Structure of Fibonacci cubes: a survey , 2013, J. Comb. Optim..

[23]  Ivan Rival,et al.  Crowns, Fences, and Dismantlable Lattices , 1974, Canadian Journal of Mathematics.

[24]  Samir Khuller,et al.  The Lattice Structure of Flow in Planar Graphs , 1993, SIAM J. Discret. Math..

[25]  Heping Zhang,et al.  Decomposition theorem on matchable distributive lattices , 2010, Discret. Appl. Math..

[26]  K. Brown,et al.  Graduate Texts in Mathematics , 1982 .

[27]  Petra Zigert,et al.  FIBONACCI CUBES ARE THE RESONANCE GRAPHS OF FIBONACCENES , 2003 .

[28]  Heping Zhang,et al.  Plane elementary bipartite graphs , 2000, Discret. Appl. Math..

[29]  Sandi Klavzar,et al.  Resonance graphs of catacondensed even ring systems are median , 2002, Discret. Math..

[30]  Heping Zhang,et al.  Resonance Graphs and a Binary Coding for the 1-Factors of Benzenoid Systems , 2008, SIAM J. Discret. Math..

[31]  J. Propp Lattice structure for orientations of graphs , 2002, math/0209005.

[32]  Heping Zhang,et al.  The Rotation Graphs of Perfect Matchings of Plane Bipartite Graphs , 1997, Discret. Appl. Math..