Feasible Semismooth Newton Method for a Class of Stochastic Linear Complementarity Problems

We consider a class of stochastic linear complementarity problems (SLCPs) with finitely many realizations. In this paper we reformulate this class of SLCPs as a constrained minimization (CM) problem. Then, we present a feasible semismooth Newton method to solve this CM problem. Preliminary numerical results show that this CM reformulation may yield a solution with high safety for SLCPs.

[1]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[2]  Xiaojun Chen,et al.  Stochastic R0 Matrix Linear Complementarity Problems , 2007, SIAM J. Optim..

[3]  Defeng Sun,et al.  On NCP-Functions , 1999, Comput. Optim. Appl..

[4]  Michael C. Ferris,et al.  Feasible descent algorithms for mixed complementarity problems , 1999, Math. Program..

[5]  Richard W. Cottle,et al.  Linear Complementarity Problem. , 1992 .

[6]  Christian Kanzow,et al.  Strictly feasible equation-based methods for mixed complementarity problems , 2001, Numerische Mathematik.

[7]  M. Fukushima,et al.  New restricted NCP functions and their applications to stochastic NCP and stochastic MPEC , 2007 .

[8]  Liqun Qi,et al.  Convergence Analysis of Some Algorithms for Solving Nonsmooth Equations , 1993, Math. Oper. Res..

[9]  Xiaojun Chen,et al.  Robust solution of monotone stochastic linear complementarity problems , 2008, Math. Program..

[10]  A. Fischer A special newton-type optimization method , 1992 .

[11]  Xiaojun Chen,et al.  A penalized Fischer-Burmeister NCP-function , 2000, Math. Program..

[12]  Andreas Fischer,et al.  Solution of monotone complementarity problems with locally Lipschitzian functions , 1997, Math. Program..

[13]  Gui-Hua Lin,et al.  New reformulations for stochastic nonlinear complementarity problems , 2006, Optim. Methods Softw..

[14]  XIAOJUN CHEN,et al.  Stochastic R 0 Matrix Linear Complementarity , 2006 .

[15]  Defeng Sun,et al.  A feasible semismooth asymptotically Newton method for mixed complementarity problems , 2002, Math. Program..

[16]  F. Facchinei,et al.  Finite-Dimensional Variational Inequalities and Complementarity Problems , 2003 .

[17]  Defeng Sun,et al.  Newton and Quasi-Newton Methods for a Class of Nonsmooth Equations and Related Problems , 1997, SIAM J. Optim..

[18]  Xiaojun Chen,et al.  Expected Residual Minimization Method for Stochastic Linear Complementarity Problems , 2005, Math. Oper. Res..