Magnetic microstructure of magnetotactic bacteria by electron holography

Off-axis electron holography in the transmission electron microscope was used to correlate the physical and magnetic microstructure of magnetite nanocrystals in magnetotactic bacteria. The magnetite crystals were all single magnetic domains, and the magnetization directions of small superparamagnetic crystals were constrained by magnetic interactions with larger crystals in the chains. Shape anisotropy was found to dominate magnetocrystalline anisotropy in elongated crystals. A coercive field between 300 and 450 oersted was determined for one chain.

[1]  John C. Montgomery,et al.  Structure and function of the vertebrate magnetic sense , 1997, Nature.

[2]  Wyn Williams,et al.  Three-dimensional micromagnetic calculations for magnetite using FFT , 1996 .

[3]  R. Frankel,et al.  Electron microscopic studies of magnetosomes in magnetotactic bacteria , 1994, Microscopy research and technique.

[4]  J. L. Gould,et al.  Biogenic magnetite as a basis for magnetic field detection in animals. , 1981, Bio Systems.

[5]  R. Frankel,et al.  Structure and morphology of magnetite anaerobically-produced by a marine magnetotactic bacterium and a dissimilatory iron-reducing bacterium , 1990 .

[6]  R. Frankel,et al.  Reaction sequence of iron sulfide minerals in bacteria and their use as biomarkers. , 1998, Science.

[7]  S. Parkin,et al.  Towards quantitative electron holography of magnetic thin films using in situ magnetization reversal , 1998 .

[8]  R. Frankel,et al.  Electron microscopy study of magnetosomes in a cultured coccoid magnetotactic bacterium , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[9]  Stephen Mann,et al.  Molecular tectonics in biomineralization and biomimetic materials chemistry , 1993, Nature.

[10]  R. Frankel,et al.  Magnetic guidance of organisms. , 1984, Annual review of biophysics and bioengineering.

[11]  R. Blakemore,et al.  Structure, morphology and crystal growth of bacterial magnetite , 1984, Nature.

[12]  J. Kirschvink,et al.  Ultrastructure, morphology and organization of biogenic magnetite from sockeye salmon, Oncorhynchus nerka: implications for magnetoreception. , 1988, The Journal of experimental biology.

[13]  R. Frankel,et al.  Remanence measurements on individual magnetotactic bacteria using a pulsed magnetic field , 1995 .

[14]  R. Frankel,et al.  Magneto-aerotaxis in marine coccoid bacteria. , 1997, Biophysical journal.

[15]  Ray F. Egerton,et al.  Electron Energy-Loss Spectroscopy , 1997, Microscopy and Microanalysis.

[16]  R. Egerton Electron Energy-Loss Spectroscopy in the Electron Microscope , 1995, Springer US.

[17]  I. S. Jacobs,et al.  An Approach to Elongated Fine-Particle Magnets , 1955 .

[18]  Chin-Yuan Hsu,et al.  Magnetoreception in Honeybees , 1994, Science.

[19]  Orchowski,et al.  Electron holography surmounts resolution limit of electron microscopy. , 1995, Physical review letters.

[20]  Holger W. Jannasch,et al.  Anaerobic magnetite production by a marine, magnetotactic bacterium , 1988, Nature.

[21]  B. B. Schwartz,et al.  Magnetic properties of magnetotactic bacteria , 1988 .

[22]  R S Wolfe,et al.  Isolation and pure culture of a freshwater magnetic spirillum in chemically defined medium , 1979, Journal of bacteriology.

[23]  A. Tonomura Electron-holographic interference microscopy , 1992 .

[24]  Roger Proksch,et al.  Magnetic force microscopy of the submicron magnetic assembly in a magnetotactic bacterium , 1995 .

[25]  M. Farina,et al.  The observation of large magnetite (Fe3O4) crystals from magnetotactic bacteria by electron and atomic force microscopy , 1994 .