Collision avoidance and low-observable navigation in a dynamic environment

The evasive navigation of an aircraft in the presence of enemy radar or SAM (surface-to-air missile) sites or AWACS is formulated using a time-varying Flexible Delaunay Triangulation (FDT) and an artificial-intelligence-based multi-objective search. It is implemented on a SUN 4 workstation. The system displays the circumdisks, the FDT, and the connected graph for generation of candidate paths. The multi-objective A"* algorithm generates the path which satisfies the following requirements: 1) avoidance of the detection range of the moving obstacle; and 2) minimum deviation from the shortest path to the goal. The system then displays the motion of the vehicle and of the moving radar/SAM site in real time. In case of user interruption (for the purpose of inserting, in a simulation, new obstacles crossing the designated path), the FDT retriangulates locally. The closest line to the path is drawn, and A"* search is once again performed for generation of the optimum path. Background material on relevant aspects of computational geometry, intelligent control and heuristic search is also given, providing a survey character to this work.

[1]  Richard E. Korf,et al.  Real-time heuristic search: new results , 1988, AAAI 1988.

[2]  R. R. Mitchell Expert systems and air-combat simulation , 1989 .

[3]  A.C.-C. Meng Real time penetration of multiple moving threats , 1989, Proceedings of the IEEE National Aerospace and Electronics Conference.

[4]  Richard P. Lippmann,et al.  An introduction to computing with neural nets , 1987 .

[5]  Micha Sharir,et al.  Algorithmic motion planning in robotics , 1991, Computer.

[6]  Bruce H. Krogh,et al.  Integrated path planning and dynamic steering control for autonomous vehicles , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[7]  Milton W. Green,et al.  An Expert System for Real-Time Control , 1986, IEEE Software.

[8]  J. Nitao,et al.  An intelligent system for an autonomous vehicle , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[9]  Robin Sibson,et al.  Locally Equiangular Triangulations , 1978, Comput. J..

[10]  Karl Johan Åström,et al.  Toward intelligent control , 1989 .

[11]  Rodney A. Brooks,et al.  A subdivision algorithm in configuration space for findpath with rotation , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  S. Zucker,et al.  Toward Efficient Trajectory Planning: The Path-Velocity Decomposition , 1986 .

[13]  Ervin Y. Rodin,et al.  Intelligent navigation for an autonomous mobile robot , 1988, Proceedings IEEE International Symposium on Intelligent Control 1988.

[14]  Richard E. Korf,et al.  Optimal path-finding algorithms* , 1988 .

[15]  Ervin Y. Rodin Semantic control theory , 1988 .

[16]  Karl-Erik Årzén,et al.  Expert control , 1986, at - Automatisierungstechnik.

[17]  I. G. Gowda,et al.  Dynamic Voronoi diagrams , 1983, IEEE Trans. Inf. Theory.

[18]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[19]  Michael Ian Shamos,et al.  Computational geometry: an introduction , 1985 .

[20]  George N. Saridis On the theory of intelligent machines: a survey , 1988, Proceedings of the 27th IEEE Conference on Decision and Control.

[21]  A. Meystel,et al.  Intelligent control in robotics , 1988 .

[22]  Peter Forbes Rowat,et al.  Representing spatial experience and solving spatial problems in a simulated robot environment , 1979 .

[23]  Chee Yap,et al.  Algorithmic motion planning , 1987 .

[24]  Wyatt S. Newman,et al.  Automatic obstacle avoidance at high speeds via reflex control , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[25]  Hanan Samet,et al.  A hierarchical strategy for path planning among moving obstacles [mobile robot] , 1989, IEEE Trans. Robotics Autom..

[26]  Richard E. Korf,et al.  Real-Time Heuristic Search: First Results , 1987, AAAI.

[27]  D. T. Lee,et al.  Computational Geometry—A Survey , 1984, IEEE Transactions on Computers.

[28]  Ervin Y. Rodin,et al.  Artificial intelligence methods in decision and control systems , 1987 .

[29]  Ervin Y. Rodin,et al.  Intelligent prediction methodologies in the navigation of autonomous vehicles , 1990 .

[30]  Nils J. Nilsson,et al.  A Formal Basis for the Heuristic Determination of Minimum Cost Paths , 1968, IEEE Trans. Syst. Sci. Cybern..

[31]  R. Chattergy,et al.  Some Heuristics for the Navigation of a Robot , 1985 .

[32]  S. Sitharama Iyengar,et al.  Concurrent algorithms for autonomous robot navigation in an unexplored terrain , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.