Generating and characterizing the perfect elimination orderings of a chordal graph

We develop a constant time transposition "oracle" for the set of perfect elimination orderings of chordal graphs. Using this oracle, we can generate a Gray code of all perfect elimination orderings in constant amortized time using known results about antimatroids. Using clique trees, we show how the initialization of the algorithm can be performed in linear time. We also develop two new characterizations of perfect elimination orderings: one in terms of chordless paths, and the other in terms of minimal u-v separators.

[1]  F. Gavril The intersection graphs of subtrees in tree are exactly the chordal graphs , 1974 .

[2]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[3]  Frank Ruskey,et al.  Gray codes from antimatroids , 1993 .

[4]  M. Golumbic Algorithmic Graph Theory and Perfect Graphs (Annals of Discrete Mathematics, Vol 57) , 2004 .

[5]  D. R. Fulkerson,et al.  Incidence matrices and interval graphs , 1965 .

[6]  G. Dirac On rigid circuit graphs , 1961 .

[7]  P. Sreenivasa Kumar,et al.  Minimal Vertex Separators of Chordal Graphs , 1998, Discret. Appl. Math..

[8]  Douglas R. Shier,et al.  Some aspects of perfect elimination orderings in chordal graphs , 1984, Discret. Appl. Math..

[9]  Günter M. Ziegler,et al.  Matroid Applications: Introduction to Greedoids , 1992 .

[10]  Robert E. Tarjan,et al.  Simple Linear-Time Algorithms to Test Chordality of Graphs, Test Acyclicity of Hypergraphs, and Selectively Reduce Acyclic Hypergraphs , 1984, SIAM J. Comput..

[11]  Peter Buneman,et al.  A characterisation of rigid circuit graphs , 1974, Discret. Math..

[12]  Frank Ruskey,et al.  Generating Linear Extensions Fast , 1994, SIAM J. Comput..

[13]  Blair J R S,et al.  Introduction to Chordal Graphs and Clique Trees, in Graph Theory and Sparse Matrix Computation , 1997 .

[14]  James R. Walter,et al.  Representations of chordal graphs as subtrees of a tree , 1978, J. Graph Theory.

[15]  B. Peyton,et al.  An Introduction to Chordal Graphs and Clique Trees , 1993 .

[16]  Ronald L. Graham,et al.  Optimal scheduling for two-processor systems , 1972, Acta Informatica.

[17]  Klaus Simon A Note on Lexicographic Breadt First Search for Chordal Graphs , 1995, Inf. Process. Lett..

[18]  Robert E. Tarjan,et al.  Algorithmic Aspects of Vertex Elimination on Graphs , 1976, SIAM J. Comput..