Toward Improved Identifiability of Soil Hydraulic Parameters: On the Selection of a Suitable Parametric Model

We present a thorough identifiability analysis of the soil hydraulic parameters in the parametric models of Brooks and Corey (BC; Brooks and Corey, 1964), Mualem-van Genuchten (VG; van Genuchten, 1980), and Kosugi (KC; Kosugi, 1996, 1999) using the recently developed Shuffled Complex Evolution Metropolis (SCEM-UA) algorithm (Vrugt et al., 2002b, and unpublished data). Because the SCEM-UA algorithm globally thoroughly exploits the parameter space and therefore explicitly accounts for parameter interdependence and nonlinearity of the employed parametric models, the algorithm is suited to generate a useful description of parameter uncertainty and its antithesis, parameter identifiability. A set of measured water retention characteristics of the UNSODA database (Leij et al., 1996) spanning a wide range of soil textures and three transient laboratory outflow experiments with decreasing flow rates were used to illustrate that a parameter identifiability analysis facilitates the selection of an adequate parametric model structure and provides useful information about the limitations of a model. Moreover, results suggest that one should be especially careful in establishing pedotransfer functions without knowledge of the underlying posterior uncertainty associated with the soil hydraulic parameters using direct estimation methods.

[1]  S. Sorooshian,et al.  Shuffled complex evolution approach for effective and efficient global minimization , 1993 .

[2]  D. R. Nielsen,et al.  On describing and predicting the hydraulic properties of unsaturated soils , 1985 .

[3]  Keith Beven,et al.  The future of distributed models: model calibration and uncertainty prediction. , 1992 .

[4]  Karel J. Keesman,et al.  Uncertainty propagation and speculation in projective forecasts of environmental change - a lake eutrophication example. , 1991 .

[5]  W. K. Hastings,et al.  Monte Carlo Sampling Methods Using Markov Chains and Their Applications , 1970 .

[6]  M. Schaap,et al.  Neural network analysis for hierarchical prediction of soil hydraulic properties , 1998 .

[7]  Ole Wendroth,et al.  Unsaturated hydraulic conductivity from transient multistep outflow and soil water pressure data , 1994 .

[8]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[9]  M. Trosset,et al.  Bayesian recursive parameter estimation for hydrologic models , 2001 .

[10]  R. Hills,et al.  Parameter estimation of hydraulic properties from one‐step outflow data , 1992 .

[11]  S. Sorooshian,et al.  Effective and efficient global optimization for conceptual rainfall‐runoff models , 1992 .

[12]  K. Kosugi Lognormal Distribution Model for Unsaturated Soil Hydraulic Properties , 1996 .

[13]  Yuji Takeshita,et al.  DETERMINATION OF UNSATURATED SOIL HYDRAULIC PROPERTIES FROM TRANSIENT OUTFLOW EXPERIMENTS USING GENETIC ALGORITHMS , 1999 .

[14]  Jan W. Hopmans,et al.  Optimization of Hydraulic Functions from Transient Outflow and Soil Water Pressure Data , 1993 .

[15]  Soroosh Sorooshian,et al.  Correction to “Toward improved identifiability of hydrologic model parameters: The information content of experimental data” , 2003 .

[16]  Jan Zijlstra,et al.  IDENTIFICATION OF HYDRAULIC PARAMETERS IN LAYERED SOILS BASED ON A QUASI-NEWTON METHOD , 1996 .

[17]  Lehua Pan,et al.  A hybrid global optimization method for inverse estimation of hydraulic parameters: Annealing‐Simplex Method , 1998 .

[18]  Nunzio Romano,et al.  Spatial variability of the hydraulic properties of a volcanic soil , 1995 .

[19]  David Russo,et al.  Determining soil hydraulic properties by parameter estimation: On the selection of a model for the hydraulic properties , 1988 .

[20]  J. Simunek,et al.  Flow rate dependence of soil hydraulic characteristics , 2001 .

[21]  S. Irmay,et al.  On the hydraulic conductivity of unsaturated soils , 1954 .

[22]  Jack C. Parker,et al.  Determining Soil Hydraulic Properties from One‐step Outflow Experiments by Parameter Estimation: II. Experimental Studies , 1985 .

[23]  Wolfgang Durner,et al.  State-of-the-Art in Inverse Modeling of Inflow/Outflow Experiments , 1999 .

[24]  Wolfgang Durner,et al.  Determination of parameters for bimodal hydraulic functions by inverse modeling , 1998 .

[25]  Karel J. Keesman,et al.  Membership-set estimation using random scanning and principal componet analysis , 1990 .

[26]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[27]  W. Bouten,et al.  Validity of First-Order Approximations to Describe Parameter Uncertainty in Soil Hydrologic Models , 2002 .

[28]  M. V. Genuchten,et al.  Estimating unsaturated soil hydraulic properties from multiple tension disc infiltrometer data , 1997 .

[29]  Peter Droogers,et al.  Inverse Method for Determining Soil Hydraulic Functions from One‐Step Outflow Experiments , 1992 .

[30]  Ole Wendroth,et al.  Parameter Estimation Analysis of the Evaporation Method for Determining Soil Hydraulic Properties , 1998 .

[31]  Jasper A. Vrugt,et al.  One‐, two‐, and three‐dimensional root water uptake functions for transient modeling , 2001 .

[32]  John D. Valiantzas,et al.  A simple iterative method for the simultaneous determination of soil hydraulic properties from one‐step outflow data , 1990 .

[33]  Nunzio Romano,et al.  Determining soil hydraulic functions from evaporation experiments by a parameter estimation Approach: Experimental verifications and numerical studies , 1999 .

[34]  Y. Mualem A New Model for Predicting the Hydraulic Conductivity , 1976 .

[35]  M. T. van Genuchten,et al.  Estimating Unsaturated Soil Hydraulic Properties from Tension Disc Infiltrometer Data by Numerical Inversion , 1996 .

[36]  Peter Droogers,et al.  Inverse method to determine soil hydraulic functions from multistep outflow experiments. , 1994 .

[37]  D. W. ZACHMANN,et al.  SIMULTANEOUS APPROXIMATION OF WATER CAPACITY AND SOIL HYDRAULIC CONDUCTIVITY BY PARAMETER IDENTIFICATION1 , 1982 .

[38]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[39]  A. SANTINI,et al.  EVALUATION OF A LABORATORY INVERSE METHOD FOR DETERMINING UNSATURATED HYDRAULIC PROPERTIES OF A SOIL UNDER DIFFERENT TILLAGE PRACTICES , 1995 .

[40]  Karim C. Abbaspour,et al.  Estimating unsaturated soil hydraulic parameters using ant colony optimization , 2001 .

[41]  Walter J. Rawls,et al.  Pedotransfer functions: bridging the gap between available basic soil data and missing soil hydraulic characteristics , 2001 .

[42]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[43]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[44]  A. Klute,et al.  The Calibration of the Richards Flow Equation for a Draining Column by Parameter Identification1 , 1981 .

[45]  K. Abbaspour,et al.  A sequential uncertainty domain inverse procedure for estimating subsurface flow and transport parameters , 1997 .

[46]  Gerrit H. de Rooij,et al.  Methods of Soil Analysis. Part 4. Physical Methods , 2004 .

[47]  J. Parker,et al.  Analysis of the inverse problem for transient unsaturated flow , 1988 .

[48]  S. Sorooshian,et al.  Calibration of watershed models , 2003 .

[49]  Ken'ichirou Kosugi,et al.  General model for unsaturated hydraulic conductivity for soils with lognormal pore-size distribution. , 1999 .

[50]  Karl-Josef Hollenbeck,et al.  Maximum-likelihood estimation of unsaturated hydraulic parameters , 1998 .