Multidimensional fourier transforms by systolic architectures

In this paper, time-efficient systolic and semi-systolic architectures for the implementation of multidimensional DFTs are proposed that allow modularity and easy expansibility while keeping throughput independent of the dimension of the DFT. We shall call an array semi-systolic if the input data is to be preloaded into every cell of the array or if the output data can be calculated not only in the boundary cells of the array. DFT algorithms are represented by FORTRAN-like code, in order to explicitly display the suggested rotational transformations in the index space. After the transformation, multidimensional DFT algorithm can be mapped onto a systolic structure. The area-time2 complexity of the proposed design is within logk factor of the lower bound for ak-point DFT (AT2=Ω(k2 log2k)), i.e. equals 0(k2 log3k)=0(N2M log3N) fork=N2M point DFT;A is the area complexity andT is the system throughput.

[1]  Y. Wong,et al.  Broadcast removal in systolic algorithms , 1988, [1988] Proceedings. International Conference on Systolic Arrays.

[2]  Mark G. Karpovsky,et al.  Fast Fourier transforms over finite groups by multiprocessor systems , 1990, IEEE Trans. Acoust. Speech Signal Process..

[3]  H. T. Kung Let's Design Algorithms for VLSI Systems , 1979 .

[4]  David Y. Y. Yun,et al.  Multi-dimensional systolic networks, for discrete fourier transform , 1984, ISCA 1984.

[5]  S. Venkataraman,et al.  Discrete transforms via the Walsh-Hadamard transform , 1988 .

[6]  P. Quinton Automatic synthesis of systolic arrays from uniform recurrent equations , 1984, ISCA 1984.

[7]  Izidor Gertner,et al.  VLSI Architectures for Multidimensional Fourier Transform Processing , 1987, IEEE Transactions on Computers.

[8]  Dan I. Moldovan,et al.  On the Analysis and Synthesis of VLSI Algorithms , 1982, IEEE Transactions on Computers.

[9]  Allen L. Gorin,et al.  Computing the Two-Dimensional Discrete Fourier Transform on the ASPEN Parallel Computer Architecture , 1987, International Conference on Parallel Processing.

[10]  N. Brenner Fast Fourier transform of externally stored data , 1969 .

[11]  Richard E. Twogood,et al.  An Extension of Eklundh's Matrix Transposition Algorithm and Its Application in Digital Image Processing , 1976, IEEE Transactions on Computers.

[12]  T. D. Roziner Systolic Macropipelines for Multidimensional Fourier Transforms , 1990, PARBASE / Architectures.

[13]  Arnold L. Rosenberg,et al.  Three-Dimensional VLSI: a case study , 1983, JACM.

[14]  D.I. Moldovan,et al.  On the design of algorithms for VLSI systolic arrays , 1983, Proceedings of the IEEE.

[15]  H L Buijs Fast fourier transformation of large arrays of data. , 1969, Applied optics.

[16]  M. Onoe A method for computing large-scale two-dimensional transform without transposing data matrix , 1975, Proceedings of the IEEE.

[17]  Veljko M. Milutinovic,et al.  A multimicroprocessor architecture for real-time computation of a class of DFT algorithms , 1986, IEEE Trans. Acoust. Speech Signal Process..

[18]  H. T. Kung,et al.  The Area-Time Complexity of Binary Multiplication , 1981, JACM.

[19]  G. Anderson,et al.  A stepwise approach to computing the multidimensional fast Fourier transform of large arrays , 1980 .

[20]  Thompson Fourier Transforms in VLSI , 1983, IEEE Transactions on Computers.

[21]  Benjamin W. Wah,et al.  The Design of Optimal Systolic Arrays , 1985, IEEE Transactions on Computers.

[22]  R. Bernhard Computers: Computing at the speed limit: Computers 1000 times faster than today's supercomputers would benefit vital scientific applications , 1982, IEEE Spectrum.

[23]  Weijia Shang,et al.  Systematic designs of buffers in macropipelines of systolic arrays , 1988 .

[24]  C.-W. Jen,et al.  The design of a systolic array system for linear state equations , 1988, [1988] Proceedings. International Conference on Systolic Arrays.

[25]  Claudio Moraga Design of a Multiple-Valued Systolic System for the Computation of the Chrestenson Spectrum , 1986, IEEE Transactions on Computers.

[26]  D. Dotti,et al.  Two-dimensional transforms by minicomputers without matrix transposing , 1975 .

[27]  Lynn Conway,et al.  Introduction to VLSI systems , 1978 .

[28]  Peter R. Cappello,et al.  Scheduling a system of affine recurrence equations onto a systolic array , 1988, [1988] Proceedings. International Conference on Systolic Arrays.

[29]  Benjamin W. Wah,et al.  Systematic Designs of Buffers in Macropipelines of Systolic Arrays , 1988, J. Parallel Distributed Comput..

[30]  H. T. Kung,et al.  Systolic Arrays for (VLSI). , 1978 .

[31]  P. Yip,et al.  The decimation-in-frequency algorithms for a family of discrete sine and cosine transforms , 1988 .

[32]  Franco P. Preparata,et al.  A Mesh-Connected Area-Time Optimal VLSI Multiplier of Large Integers , 1983, IEEE Transactions on Computers.

[33]  Zhongde Wang Fast algorithms for the discrete W transform and for the discrete Fourier transform , 1984 .

[34]  Dan I. Moldovan,et al.  Partitioning and Mapping Algorithms into Fixed Size Systolic Arrays , 1986, IEEE Transactions on Computers.

[35]  O. Wing,et al.  Mapping strategy for automatic design of systolic arrays , 1988, [1988] Proceedings. International Conference on Systolic Arrays.

[36]  T. Kailath,et al.  Array architectures for iterative algorithms , 1987, Proceedings of the IEEE.

[37]  Francesco Piazza,et al.  A systolic circuit for fast Hartley transform , 1988, 1988., IEEE International Symposium on Circuits and Systems.

[38]  Magdy Bayoumi,et al.  An algorithm transformation technique for multi-dimensional DSP systolic arrays , 1988, 1988., IEEE International Symposium on Circuits and Systems.

[39]  Michael J. Corinthios 3D CELLULAR ARRAYS FOR PARALLEL/CASCADE IMAGE/SIGNAL PROCESSING* , 1985 .

[40]  Daniel P. Siewiorek,et al.  A survey of highly parallel computing , 1982, Computer.

[41]  R. Singleton,et al.  A method for computing the fast Fourier transform with auxiliary memory and limited high-speed storage , 1967, IEEE Transactions on Audio and Electroacoustics.

[42]  K J Buettner Do we see an octave? , 1969, Applied optics.

[43]  S. Winograd On computing the Discrete Fourier Transform. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[44]  Mary Jane Irwin,et al.  Being Stingy with Multipliers , 1990, IEEE Trans. Computers.

[45]  H. T. Kung Why systolic architectures? , 1982, Computer.

[46]  E. Hoyer,et al.  An algorithm for the two dimensional FFT , 1977 .

[47]  Rainer Storn A novel radix-2 pipeline architecture for the computation of the DFT , 1988, 1988., IEEE International Symposium on Circuits and Systems.

[48]  Alvin M. Despain,et al.  Fourier Transform Computers Using CORDIC Iterations , 1974, IEEE Transactions on Computers.

[49]  Jean Vuillemin,et al.  A Combinatorial Limit to the Computing Power of VLSI Circuits , 1983, IEEE Transactions on Computers.

[50]  Benjamin W. Wah,et al.  Systematic approaches to the design of algorithmically specified systolic arrays , 1985, ICASSP '85. IEEE International Conference on Acoustics, Speech, and Signal Processing.