Ability of GHTD-amide and analogs to enhance insulin activity through zinc chelation and dispersal of insulin oligomers

[1]  M. Myers,et al.  GHTD-amide: A naturally occurring beta cell-derived peptide with hypoglycemic activity , 2009, Peptides.

[2]  H. Gruppen,et al.  Prediction of molar extinction coefficients of proteins and peptides using UV absorption of the constituent amino acids at 214 nm to enable quantitative reverse phase high-performance liquid chromatography-mass spectrometry analysis. , 2007, Journal of agricultural and food chemistry.

[3]  E. Prenner,et al.  Optimization of the hydrochloric acid concentration used for trifluoroacetate removal from synthetic peptides , 2007, Journal of peptide science : an official publication of the European Peptide Society.

[4]  K. Ekberg,et al.  Proinsulin C-peptide elicits disaggregation of insulin resulting in enhanced physiological insulin effects , 2006, Cellular and Molecular Life Sciences.

[5]  Michael F. Dunn,et al.  Zinc–Ligand Interactions Modulate Assembly and Stability of the Insulin Hexamer – A Review , 2005, Biometals.

[6]  Jeremy M Berg,et al.  Site selection in tandem arrays of metal-binding domains. , 2004, Inorganic chemistry.

[7]  A. Mitra,et al.  Insulin Aggregation in Aqueous Media and Its Effect on Alpha-Chymotrypsin-Mediated Proteolytic Degradation , 1991, Pharmaceutical Research.

[8]  S. Emdin,et al.  Role of zinc in insulin biosynthesis , 1980, Diabetologia.

[9]  Jeffrey,et al.  Role of C-terminal B-chain residues in insulin assembly : the structure of hexameric LysB 28 ProB 29-human insulin , 2004 .

[10]  R. L. Baldwin,et al.  Circular dichroism spectra of short, fixed-nucleus alanine helices , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[11]  A. Brack,et al.  Zinc‐Induced Conformational Transitions of Acidic Peptides: Characterization by Circular Dichroism and Electrospray Mass Spectrometry , 1999 .

[12]  D. Steiner,et al.  The role of assembly in insulin's biosynthesis. , 1998, Current opinion in structural biology.

[13]  C. A. French,et al.  Mechanisms of stabilization of the insulin hexamer through allosteric ligand interactions. , 1997, Biochemistry.

[14]  J. M. Beals,et al.  Role of C-terminal B-chain residues in insulin assembly: the structure of hexameric LysB28ProB29-human insulin. , 1995, Structure.

[15]  J. King,et al.  Daily variation in plasma zinc concentrations in women fed meals at six-hour intervals. , 1994, The Journal of nutrition.

[16]  D. Howey,et al.  [Lys(B28), Pro(B29)]-Human Insulin: A Rapidly Absorbed Analogue of Human Insulin , 1994, Diabetes.

[17]  Stephen J. H. Ashcroft,et al.  Insulin : molecular biology to pathology , 1992 .

[18]  Z. Dauter,et al.  X-ray structure of an unusual Ca2+ site and the roles of Zn2+ and Ca2+ in the assembly, stability, and storage of the insulin hexamer. , 1991, Biochemistry.

[19]  M. Roy,et al.  Spectroscopic signatures of the T to R conformational transition in the insulin hexamer. , 1989, Journal of Biological Chemistry.

[20]  M. Dunn,et al.  Insulin-metal ion interactions: the binding of divalent cations to insulin hexamers and tetramers and the assembly of insulin hexamers. , 1988, Biochemistry.

[21]  J. Spitzer,et al.  Alterations in glucose kinetics induced by pentobarbital anesthesia. , 1986, The American journal of physiology.

[22]  J. Bornstein,et al.  Insulin Potentiating Action of a Peptide Fraction from Human Urine , 1974, Diabetes.

[23]  D. Steiner,et al.  Comparative Aspects of Proinsulin and Insulin Structure and Biosynthesis , 1973 .

[24]  S. Lakoff Insulin synthesis. , 1973, Science.

[25]  Tom L. Blundell,et al.  Insulin: The Structure in the Crystal and its Reflection in Chemistry and Biology by , 1972 .