Relativistic runaway electrons in tokamak plasmas

An experimental study of the generation of runaway electrons in TEXTOR has been perfonned. From the infrared synchrotron radiation emitted by relativistic electrons, the number of runaway electrons can be obtained as a function of time. In low density discharges cne < lxl019 m-3) runaways are created throughout the discharge and not predominantly in the start-up phase. From the exponential increase in the runaway population and the ongoing runaway production after increasing the density, it is concluded that the secondary generation, i.e. the creation of runaways through close collisions of already existing runaways with thennal electrons, provides an essential contribution to the runaway production. The effective avalanche time of this secondary process is determined to be leff = 0.9 ± 0.2 s.

[1]  H. Knoepfel,et al.  Runaway electrons in toroidal discharges , 1979 .

[2]  B. Coppi,et al.  Slide-away distributions and relevant collective modes in high-temperature plasmas , 1976 .

[3]  K. H. Finken,et al.  Energy flux to the textor limiters during disruptions , 1992 .

[4]  G. Fussmann On the motion of runaway electrons in momentum space , 1979 .

[5]  F. Castejón,et al.  Runaway transport studies in the TJ-I tokamak , 1994 .

[6]  A. Bienenstock Applications of Synchrotron Radiation , 1979, IEEE Transactions on Nuclear Science.

[7]  B. Breizman Collective Interaction of Relativistic Electron Beams with Plasmas , 1990 .

[8]  H. Fleischmann Evaluation of potential runaway generation in large-tokamak disruptions , 1993 .

[9]  N. T. Besedin,et al.  Stability of a runaway electron beam , 1986 .

[10]  R. Cohen Runaway electrons in an impure plasma , 1976 .

[11]  G. Mank,et al.  Experimental investigation of runaway electron generation in TEXTOR , 1993 .

[12]  P. Brossier Runaway-driven kinetic instabilities in tokamaks , 1978 .

[13]  N. J. Lopes Cardozo,et al.  Observations of infrared radiation during disruptions in TEXTOR: heat pulses and runaway electrons , 1995 .

[14]  Jaspers,et al.  Islands of runaway electrons in the TEXTOR tokamak and relation to transport in a stochastic field. , 1994, Physical review letters.

[15]  E. Harrison Runaway and suprathermal particles , 1960 .

[16]  Y. Yagi,et al.  Plasma current and energetic electrons in the core plasma of a reversed field pinch , 1991 .

[17]  M. Rosenbluth,et al.  Electron heat transport in a tokamak with destroyed magnetic surfaces , 1978 .

[18]  R. Giovanelli XVII. Electron energies resulting from an electric field in a highly ionized gas , 1949 .

[19]  P. Diamond,et al.  A study of runaway electron confinement in the ASDEX tokamak , 1988 .

[20]  C. Barnes,et al.  Sawtooth oscillations in the flux of runaway electrons to the PLT limiter , 1982 .

[21]  G. Sadler,et al.  Photoneutron production accompanying plasma disruptions in JET , 1988 .

[22]  C. Hegna,et al.  Plasma transport in mixed magnetic topologies , 1993 .

[23]  A. H. Morton,et al.  Runaway electrons and rational-q surfaces in a tokamak , 1983 .

[24]  Dan M. Goebel,et al.  Observation of infrared synchrotron radiation from tokamak runaway electrons in TEXTOR , 1990 .

[25]  O. Pogutse,et al.  The kinetic theory of runaway electron beam instability in a tokamak , 1978 .

[26]  H. Klein,et al.  Liquid Scintillation Detectors for Gamma and Neutron Diagnostic at Textor and Results of Runaway and Sawtooth Oscillations , 1994 .

[27]  R. Kulsrud,et al.  Runaway electrons in a plasma , 1973 .

[28]  M. Kruskal,et al.  Runaway Electrons in an Ideal Lorentz Plasma , 1964 .

[29]  R. Gill Generation and loss of runaway electrons following disruptions in JET , 1993 .

[30]  J. W. Connor,et al.  Relativistic limitations on runaway electrons , 1975 .

[31]  A. N. Lebedev,et al.  ON THE THEORY OF RUNAWAY ELECTRONS , 1965 .

[32]  G. Fussmann Long-Pulse Suprathermal Discharges in the ASDEX Tokamak , 1981 .

[33]  A. Wootton,et al.  Estimating the runaway diffusion coefficient in the TEXT tokamak from shift and externally applied resonant magnetic‐field experiments , 1991 .

[34]  D. Moreau,et al.  Stochastic Instability of Relativistic Runaway Electrons Due to Lower Hybrid Waves , 1991 .

[35]  K. Dietz Experience with limiter- and wall materials in jet , 1988 .

[36]  Julian Schwinger,et al.  On the Classical Radiation of Accelerated Electrons , 1949 .

[37]  Papadopoulos Nonlinear stabilization of beam--plasma interactions by parametric effects. Interim report , 1975 .

[38]  D. Campbell,et al.  Analysis of electron cyclotron emission from non-thermal discharges in ASDEX tokamak , 1984 .

[39]  D. Swain,et al.  Radial transport of high-energy runaway electrons in ORMAK , 1978 .

[40]  K. Papadopoulos,et al.  Formation of positive slope on electron runaway distribution in tokamaks , 1977 .

[41]  A. Wootton,et al.  Runaway electrons as a diagnostic of magnetic fluctuations in the edge plasma of the Texas Experimental Tokamak , 1992 .

[42]  J. Taylor,et al.  Curvature drift modifications of magnetic field maps for runaway electrons , 1992 .

[43]  R. Taylor,et al.  Observation of high-frequency radiation and anomalous ion heating on low- density discharges in Alcator , 1976 .

[44]  H. Dreicer,et al.  Electron and Ion Runaway in a Fully Ionized Gas. I , 1959 .