The effect of water vapour on the normalized difference vegetation index derived for the Sahelian region from NOAA AVHRR data

Abstract The near-infrared channel of the NOAA advanced very high resolution radiometer (AVHRR) contains a water vapour absorption band that affects the determination of the normalized difference vegetation index (NDVI). Daily and seasonal variations in atmospheric water vapour within the Sahel are shown to affect the use of the NDVI for the estimation of primary production. This water vapour effect is quantified for the Sahel by radiative transfer modelling and empirically using observations made in Mali in 1986. In extreme cases, changes in water vapour are shown to result in a reduction of the NDVI by 0.1. Variations of the NDVI of 001 would result from typical low atmospheric water vapour days within the wet season. If these conditions were to persist throughout the season it would lead to an overestimate of production of 200 kg ha−1. The measurement of atmospheric water vapour using the AVHRR thermal channels, the high-resolution Infrared Sounder 2 (HIRS2), and the microwave sounding unit (MSU) senso...

[1]  Thomas F. Eck,et al.  Precipitable water in the Sahel measured using sun photometry. , 1990 .

[2]  Wayne D. Robinson,et al.  Low-level water vapor fields from the VISSR Atmospheric Sounder (VAS) 'split window' channels , 1982 .

[3]  Thomas F. Eck,et al.  Temporal and spatial variability of aerosol optical depth in the Sahel region in relation to vegetation remote sensing , 1991 .

[4]  Z. Li,et al.  Towards a local split window method over land surfaces , 1990 .

[5]  S. Tuller WORLD DISTRIBUTION OF MEAN MONTHLY AND ANNUAL PRECIPITABLE WATER1 , 1968 .

[6]  S. Prince Satellite remote sensing of primary production: comparison of results for Sahelian grasslands 1981-1988 , 1991 .

[7]  P. Deschamps,et al.  Description of a computer code to simulate the satellite signal in the solar spectrum : the 5S code , 1990 .

[8]  P. Schluessel,et al.  Satellite-derived low-level atmospheric water vapour content from synergy of AVHRR with HIRS , 1989 .

[9]  Compton J. Tucker,et al.  Satellite remote sensing of total herbaceous biomass production in the Senegalese Sahel - 1980-1984 , 1985 .

[10]  Zev Levin,et al.  Size distribution, chemical composition, and optical properties of urban and desert aerosols in Israel , 1979 .

[11]  T. O. Aro Analysis of data on surface and tropospheric water vapour , 1976 .

[12]  J. Susskind,et al.  First-Guess Dependence of a Physically Based Set of Temperature Humidity Retrievals from HIRS2/MSU Data , 1988 .

[13]  C. Justice,et al.  Analysis of the phenology of global vegetation using meteorological satellite data , 1985 .

[14]  J. Frangi,et al.  Humidity and Turbidity Parameters in Sahel: A Case Study for Niamey (Niger) , 1983 .

[15]  L. J. Cox Optical Properties of the Atmosphere , 1979 .

[16]  V. Salomonson,et al.  MODIS: advanced facility instrument for studies of the Earth as a system , 1989 .

[17]  Derek F. Hayward,et al.  Climatology of West Africa , 1987 .

[18]  C. Tucker,et al.  Investigation of soil influences in AVHRR red and near-infrared vegetation index imagery , 1991 .

[19]  J. Susskind,et al.  Remote Sensing of Weather and Climate Parameters From , 1984 .

[20]  J. Bille,et al.  Biomasse végétale et production primaire nette , 1972 .

[21]  P. Deschamps,et al.  Atmospheric modeling for space measurements of ground reflectances, including bidirectional properties. , 1979, Applied optics.

[22]  P. Hiernaux,et al.  Suivi du développement végétal au cours de l'été 1984 dans le Sahel Malien , 1986 .

[23]  B. Holben Characteristics of maximum-value composite images from temporal AVHRR data , 1986 .

[24]  G. d’Almeida,et al.  On the variability of desert aerosol radiative characteristics , 1987 .

[25]  G. Dalu Satellite remote sensing of atmospheric water vapour , 1986 .