The Radau-Lanczos Method for Matrix Functions

Analysis and development of restarted Krylov subspace methods for computing $f(A){\em b}$ have proliferated in recent years. We present an acceleration technique for such methods when applied to St...

[1]  Stefan Güttel,et al.  Convergence of Restarted Krylov Subspace Methods for Stieltjes Functions of Matrices , 2014, SIAM J. Matrix Anal. Appl..

[2]  M. Eiermann,et al.  Implementation of a restarted Krylov subspace method for the evaluation of matrix functions , 2008 .

[3]  L. Knizhnerman,et al.  Extended Krylov Subspaces: Approximation of the Matrix Square Root and Related Functions , 1998, SIAM J. Matrix Anal. Appl..

[4]  G. Golub,et al.  Matrices, Moments and Quadrature with Applications , 2009 .

[5]  Marlis Hochbruck,et al.  Exponential Integrators for Large Systems of Differential Equations , 1998, SIAM J. Sci. Comput..

[6]  I. Turner,et al.  A restarted Lanczos approximation to functions of a symmetric matrix , 2010 .

[7]  A. D. Kennedy Algorithms for Dynamical Fermions , 2006 .

[8]  Bruno Lang,et al.  An iterative method to compute the sign function of a non-Hermitian matrix and its application to the overlap Dirac operator at nonzero chemical potential , 2007, Comput. Phys. Commun..

[9]  Walter Gautschi,et al.  Gauss-Radau formulae for Jacobi and Laguerre weight functions , 2000 .

[10]  Daniel P. Simpson Krylov subspace methods for approximating functions of symmetric positive definite matrices with applications to applied statistics and anomalous diffusion , 2008 .

[11]  H. V. D. Vorst,et al.  Numerical methods for the QCDd overlap operator. I. Sign-function and error bounds , 2002, hep-lat/0202025.

[12]  Michele Benzi,et al.  MATRIX FUNCTIONS , 2006 .

[13]  Stefan Güttel,et al.  Efficient and Stable Arnoldi Restarts for Matrix Functions Based on Quadrature , 2014, SIAM J. Matrix Anal. Appl..

[14]  Y. Saad Analysis of some Krylov subspace approximations to the matrix exponential operator , 1992 .

[15]  Stefan Güttel,et al.  Deflated Restarting for Matrix Functions , 2011, SIAM J. Matrix Anal. Appl..

[16]  Dirk Roose,et al.  Ritz and harmonic Ritz values and the convergence of FOM and GMRES , 1999, Numer. Linear Algebra Appl..

[17]  Oliver G. Ernst,et al.  A Restarted Krylov Subspace Method for the Evaluation of Matrix Functions , 2006, SIAM J. Numer. Anal..

[18]  M. Hochbruck,et al.  Exponential integrators , 2010, Acta Numerica.

[19]  Nicholas J. Higham,et al.  Functions of matrices - theory and computation , 2008 .

[20]  C. Lubich,et al.  On Krylov Subspace Approximations to the Matrix Exponential Operator , 1997 .

[21]  Henk A. van der Vorst,et al.  Approximate solutions and eigenvalue bounds from Krylov subspaces , 1995, Numer. Linear Algebra Appl..

[22]  Gene H. Golub,et al.  Some modified matrix eigenvalue problems , 1973, Milestones in Matrix Computation.

[23]  Andreas Frommer,et al.  Error bounds and estimates for Krylov subspace approximations of Stieltjes matrix functions , 2016 .

[24]  Yousef Saad,et al.  Iterative methods for sparse linear systems , 2003 .

[25]  Henry C. Thacher,et al.  Applied and Computational Complex Analysis. , 1988 .

[26]  Desmond J. Higham,et al.  Network Properties Revealed through Matrix Functions , 2010, SIAM Rev..

[27]  Phillipp Kaestner,et al.  Linear And Nonlinear Programming , 2016 .