Fast monotone summation over disjoint sets

We study the problem of computing an ensemble of multiple sums where the summands in each sum are indexed by subsets of size p of an n-element ground set. More precisely, the task is to compute, for each subset of size q of the ground set, the sum over the values of all subsets of size p that are disjoint from the subset of size q. We present an arithmetic circuit that, without subtraction, solves the problem using O((n p + n q )logn) arithmetic gates, all monotone; for constant p, q this is within the factor logn of the optimal. The circuit design is based on viewing the summation as a “set nucleation” task and using a tree-projection approach to implement the nucleation. Applications include improved algorithms for counting heaviest k-paths in a weighted graph, computing permanents of rectangular matrices, and dynamic feature selection in machine learning.

[1]  A. V. Chashkin On the complexity of Boolean matrices, graphs, and the Boolean functions corresponding to them , 1994 .

[2]  Daniel Lokshtanov,et al.  Saving space by algebraization , 2010, STOC '10.

[3]  F. Yates Design and Analysis of Factorial Experiments , 1958 .

[4]  Robert Kennes,et al.  Computational aspects of the Mobius transformation of graphs , 1992, IEEE Trans. Syst. Man Cybern..

[5]  Ryan Williams,et al.  Finding paths of length k in O*(2k) time , 2008, Inf. Process. Lett..

[6]  Christopher Umans Group-theoretic algorithms for matrix multiplication , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).

[7]  Michael Clausen,et al.  Algebraic complexity theory , 1997, Grundlehren der mathematischen Wissenschaften.

[8]  Donald E. Knuth,et al.  The art of computer programming. Vol.2: Seminumerical algorithms , 1981 .

[9]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[10]  Qiang Ji,et al.  Efficient Structure Learning of Bayesian Networks using Constraints , 2011, J. Mach. Learn. Res..

[11]  L. R. Kerr The Effect of Algebraic Structure on the Computational Complexity of Matrix Multiplication , 1970 .

[12]  Ryan Williams,et al.  Finding, minimizing, and counting weighted subgraphs , 2009, STOC '09.

[13]  Andreas Björklund,et al.  Evaluation of permanents in rings and semirings , 2010, Inf. Process. Lett..

[14]  R. Bellman COMBINATORIAL PROCESSES AND DYNAMIC PROGRAMMING , 1958 .

[15]  Richard Bellman,et al.  Dynamic Programming Treatment of the Travelling Salesman Problem , 1962, JACM.

[16]  Noga Alon,et al.  Finding and counting given length cycles , 1997, Algorithmica.

[17]  Ryan Williams,et al.  LIMITS and Applications of Group Algebras for Parameterized Problems , 2009, ACM Trans. Algorithms.

[18]  Andreas Björklund,et al.  Computing the Tutte Polynomial in Vertex-Exponential Time , 2007, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[19]  Raphael Yuster,et al.  Finding heaviest H-subgraphs in real weighted graphs, with applications , 2006, TALG.

[20]  Claire Mathieu Foreword to special issue SODA 2009 , 2010, TALG.

[21]  Virginia Vassilevska Williams,et al.  Multiplying matrices faster than coppersmith-winograd , 2012, STOC '12.

[22]  Leslie G. Valiant Negation is Powerless for Boolean Slice Functions , 1986, SIAM J. Comput..

[23]  Donald E. Knuth The Art of Computer Programming 2 / Seminumerical Algorithms , 1971 .

[24]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[25]  Alon Itai,et al.  Finding a minimum circuit in a graph , 1977, STOC '77.

[26]  R. A. FISHER,et al.  The Design and Analysis of Factorial Experiments , 1938, Nature.

[27]  Andreas Björklund,et al.  Determinant Sums for Undirected Hamiltonicity , 2010, 2010 IEEE 51st Annual Symposium on Foundations of Computer Science.

[28]  Don Coppersmith,et al.  Matrix multiplication via arithmetic progressions , 1987, STOC.

[29]  J. Tukey,et al.  An algorithm for the machine calculation of complex Fourier series , 1965 .

[30]  Andreas Björklund,et al.  Set Partitioning via Inclusion-Exclusion , 2009, SIAM J. Comput..

[31]  Andreas Björklund,et al.  Fourier meets möbius: fast subset convolution , 2006, STOC '07.

[32]  Andreas Björklund,et al.  Counting Paths and Packings in Halves , 2009, ESA.

[33]  Ryan Williams,et al.  Limits and Applications of Group Algebras for Parameterized Problems , 2009, ICALP.

[34]  M. Held,et al.  A dynamic programming approach to sequencing problems , 1962, ACM National Meeting.

[35]  Michal Pilipczuk,et al.  Solving Connectivity Problems Parameterized by Treewidth in Single Exponential Time , 2011, 2011 IEEE 52nd Annual Symposium on Foundations of Computer Science.

[36]  Mikko Koivisto,et al.  Fast Monotone Summation over Disjoint Sets , 2012, IPEC.