Strain-controlled impurity-induced disordered apertures for high-power single-mode VCSELs
暂无分享,去创建一个
Patrick Su | Kevin P. Pikul | Fu-Chen Hsiao | Thomas O'Brien | John M. Dallesasse | J. Dallesasse | T. O’Brien | F. Hsiao | P. Su | Patrick Su
[1] Yi Rao,et al. 1550 nm high contrast grating VCSEL. , 2010, Optics express.
[2] A. R. Sugg,et al. Hydrolyzation oxidation of AlxGa1−xAs‐AlAs‐GaAs quantum well heterostructures and superlattices , 1990 .
[3] R. Michalzik,et al. Efficient single-mode oxide-confined GaAs VCSEL's emitting in the 850-nm wavelength regime , 1997, IEEE Photonics Technology Letters.
[4] M. Henini,et al. Physics of optoelectronic devices , 1997 .
[5] K. Mackenzie,et al. Stress Control of Si-based PECVD Dielectrics , 2006 .
[6] J. Dallesasse,et al. Mode Behavior of VCSELs With Impurity-Induced Disordering , 2017, IEEE Photonics Technology Letters.
[7] Ciprian Iliescu,et al. Low stress PECVD?SiNx layers at high deposition rates using high power and high frequency for MEMS applications , 2006 .
[8] J. Dallesasse,et al. Controlling impurity-induced disordering via mask strain for high-performance vertical-cavity surface-emitting lasers , 2018 .
[9] R. C. Thompson,et al. Optical Waves in Layered Media , 1990 .
[11] A. Larsson,et al. Transverse mode selection in large-area oxide-confined vertical-cavity surface-emitting lasers using a shallow surface relief , 1999, IEEE Photonics Technology Letters.
[12] R. Michalzik,et al. 57% wallplug efficiency oxide-confined 850 nm wavelength GaAs VCSELs , 1997 .
[13] Karl Hess,et al. Disorder of an AlAs‐GaAs superlattice by impurity diffusion , 1981 .
[14] L. Mawst,et al. Simplified-antiresonant reflecting optical waveguide-type vertical-cavity surface-emitting lasers , 2000 .
[15] Chen Chu,et al. 28-Gbps 850-nm oxide VCSEL development and manufacturing progress at Avago , 2014, Photonics West - Optoelectronic Materials and Devices.
[16] D. Deppe,et al. Native-Oxide Defined Ring Contact for Low Threshold Vertical-Cavity Lasers , 1994 .
[17] Ying-Jay Yang,et al. The Influence of Zn-Diffusion Depth on the Static and Dynamic Behavior of Zn-Diffusion High-Speed Vertical-Cavity Surface-Emitting Lasers at an 850 nm Wavelength , 2009, IEEE Journal of Quantum Electronics.
[18] John M. Dallesasse,et al. Transverse mode selection in vertical-cavity surface-emitting lasers via deep impurity-induced disordering , 2017, OPTO.
[19] J. Dallesasse,et al. Wafer-Scale Method of Controlling Impurity-Induced Disordering for Optical Mode Engineering in High-Performance VCSELs , 2018, IEEE Transactions on Semiconductor Manufacturing.
[20] L. Kuo,et al. Silicon nitride films fabricated by a plasma-enhanced chemical vapor deposition method for coatings of the laser interferometer gravitational wave detector , 2018 .
[21] P. Dapkus,et al. Aperture placement effects in oxide-defined vertical-cavity surface-emitting lasers , 1998, IEEE Photonics Technology Letters.
[22] Holger Moench,et al. VCSELs in short-pulse operation for time-of-flight applications , 2018, OPTO.
[23] Yong-Hee Lee,et al. Single-fundamental-mode photonic-crystal vertical-cavity surface-emitting lasers , 2002 .
[24] Dennis G. Deppe,et al. Atom diffusion and impurity‐induced layer disordering in quantum well III‐V semiconductor heterostructures , 1988 .