Contributions of North American endophytes to the phylogeny, ecology, and taxonomy of Xylariaceae (Sordariomycetes, Ascomycota).

The Xylariaceae (Sordariomycetes) comprise one of the largest and most diverse families of Ascomycota, with at least 85 accepted genera and ca. 1343 accepted species. In addition to their frequent occurrence as saprotrophs, members of the family often are found as endophytes in living tissues of phylogenetically diverse plants and lichens. Many of these endophytes remain sterile in culture, precluding identification based on morphological characters. Previous studies indicate that endophytes are highly diverse and represent many xylariaceous genera; however, phylogenetic analyses at the family level generally have not included endophytes, such that their contributions to understanding phylogenetic relationships of Xylariaceae are not well known. Here we use a multi-locus, cumulative supermatrix approach to integrate 92 putative species of fungi isolated from plants and lichens into a phylogenetic framework for Xylariaceae. Our collection spans 1933 isolates from living and senescent tissues in five biomes across the continental United States, and here is analyzed in the context of previously published sequence data from described species and additional taxon sampling of type specimens from culture collections. We found that the majority of strains obtained in our surveys can be classified in the hypoxyloid and xylaroid subfamilies, although many also were found outside of these lineages (as currently circumscribed). Many endophytes were placed in lineages previously not known for endophytism. Most endophytes appear to represent novel species, but inferences are limited by potential gaps in public databases. By linking our data, publicly available sequence data, and records of ascomata, we identify many geographically widespread, host-generalist clades capable of symbiotic associations with diverse photosynthetic partners. Concomitant with such cosmopolitan host use and distributions, many xylariaceous endophytes appear to inhabit both living and non-living plant tissues, with potentially important roles as saprotrophs. Overall, our study reveals major gaps in the availability of multi-locus datasets and metadata for this iconic family, and provides new hypotheses regarding the ecology and evolution of endophytism and other trophic modes across the family Xylariaceae.

[1]  Ignazio Carbone,et al.  Tissue storage and primer selection influence pyrosequencing‐based inferences of diversity and community composition of endolichenic and endophytic fungi , 2014, Molecular ecology resources.

[2]  R. O’Hara,et al.  Relocation, high‐latitude warming and host genetic identity shape the foliar fungal microbiome of poplars , 2015, Molecular ecology.

[3]  F. Lutzoni,et al.  Contribution of RPB2 to multilocus phylogenetic studies of the euascomycetes (Pezizomycotina, Fungi) with special emphasis on the lichen-forming Acarosporaceae and evolution of polyspory. , 2004, Molecular phylogenetics and evolution.

[4]  Rachel E Gallery,et al.  Diversity and evolutionary origins of fungi associated with seeds of a neotropical pioneer tree: a case study for analysing fungal environmental samples. , 2009, Mycological research.

[5]  P. Srikitikulchai,et al.  Recognition and characterization of four Thai xylariaceous fungi inhabiting various tropical foliages as endophytes by DNA sequences and host plant preference , 2012 .

[6]  J. Guarro,et al.  A new species of Ascotricha from Spanish soil , 1998 .

[7]  S. Udagawa,et al.  A second species of Ascotricha with non-ostiolate ascomata , 1994 .

[8]  A. Arnold,et al.  Heptaketides from Corynespora sp. inhabiting the cavern beard lichen, Usnea cavernosa: first report of metabolites of an endolichenic fungus. , 2007, Journal of natural products.

[9]  Jolanta Miadlikowska,et al.  Host and geographic structure of endophytic and endolichenic fungi at a continental scale. , 2012, American journal of botany.

[10]  J. Oliver,et al.  The general stochastic model of nucleotide substitution. , 1990, Journal of theoretical biology.

[11]  J. Rogers,et al.  Phylogenetic status of Xylaria subgenus Pseudoxylaria among taxa of the subfamily Xylarioideae (Xylariaceae) and phylogeny of the taxa involved in the subfamily. , 2010, Molecular phylogenetics and evolution.

[12]  Lynne Boddy,et al.  Fungal decomposition of wood , 1988 .

[13]  R. Dennis Xylarioideae and Thamnomycetoideae of Congo , 1961 .

[14]  M. B. Couger,et al.  Phylogenetic diversity and community structure of anaerobic gut fungi (phylum Neocallimastigomycota) in ruminant and non-ruminant herbivores , 2010, The ISME Journal.

[15]  J. Rogers,et al.  The Xylariaceae of the Hawaiian Islands , 2012 .

[16]  Jason E. Stajich,et al.  The Fungi , 2009, Current Biology.

[17]  D. Harris,et al.  Can you bank on GenBank , 2003 .

[18]  O. Eriksson,et al.  Neolecta—a fungal dinosaur? Evidence from β-tubulin amino acid sequences , 2001 .

[19]  Ignazio Carbone,et al.  A method for designing primer sets for speciation studies in filamentous ascomycetes , 1999 .

[20]  R. Vilgalys,et al.  Endophytic Xylaria (Xylariaceae) among liverworts and angiosperms: phylogenetics, distribution, and symbiosis. , 2003, American journal of botany.

[21]  Katalin Molnár,et al.  A multigene phylogenetic synthesis for the class Lecanoromycetes (Ascomycota): 1307 fungi representing 1139 infrageneric taxa, 317 genera and 66 families. , 2014, Molecular phylogenetics and evolution.

[22]  T. White Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics , 1990 .

[23]  J. Rogers Sarcoxylon and Entonaema (Xylariaceae) , 1981 .

[24]  R. Vilgalys,et al.  Rapid genetic identification and mapping of enzymatically amplified ribosomal DNA from several Cryptococcus species , 1990, Journal of bacteriology.

[25]  Michael Weiss,et al.  Towards a unified paradigm for sequence‐based identification of fungi , 2013, Molecular ecology.

[26]  Alfred Möller Phycomyceten und Ascomyceten. Untersuchungen aus Brasilien, von Alfred Möller. , 1901 .

[27]  K. Hyde,et al.  Eight new species of Anthostomella from South Africa. , 2000 .

[28]  K. Hyde,et al.  Anthostomella is polyphyletic comprising several genera in Xylariaceae , 2015, Fungal Diversity.

[29]  P. Coley,et al.  Communities of fungal endophytes in tropical forest grasses: highly diverse host- and habitat generalists characterized by strong spatial structure , 2014 .

[30]  P. Cannon,et al.  Strategies for rapid assessment of fungal diversity , 1997, Biodiversity & Conservation.

[31]  J. Stenlid,et al.  Molecular and morphological investigation of Daldinia in northern Europe , 2000 .

[32]  P. Wagner,et al.  Integrating ambiguously aligned regions of DNA sequences in phylogenetic analyses without violating positional homology. , 2000, Systematic biology.

[33]  M. Reddy,et al.  Endophytic Xylariaceae from the forests of Western Ghats, southern India: distribution and biological activities , 2013 .

[34]  P Green,et al.  Base-calling of automated sequencer traces using phred. II. Error probabilities. , 1998, Genome research.

[35]  J. Rogers,et al.  Revisionary studies in the Calosphaeriales , 1993 .

[36]  M. Stadler,et al.  The Xylariaceae as model example for a unified nomenclature following the “One Fungus-One Name” (1F1N) concept , 2013 .

[37]  M. Stadler,et al.  New species of Hypoxylon from western Europe and Ethiopia. , 2010 .

[38]  K. O’Donnell,et al.  Kolokosides A-D: triterpenoid glycosides from a Hawaiian isolate of Xylaria sp. , 2007, Journal of natural products.

[39]  J. Rogers,et al.  Conidial states of some species of Diatrypaceae and Xylariaceae , 1986 .

[40]  D. Maddison,et al.  Mesquite: a modular system for evolutionary analysis. Version 2.6 , 2009 .

[41]  L. Espindola,et al.  Antimicrobial and cytotoxic secondary metabolites from tropical leaf endophytes: Isolation of antibacterial agent pyrrocidine C from Lewia infectoria SNB-GTC2402. , 2013, Phytochemistry.

[42]  R. Henrik Nilsson,et al.  An open source software package for automated extraction of ITS1 and ITS2 from fungal ITS sequences for use in high-throughput community assays and molecular ecology , 2010 .

[43]  J. Stenlid,et al.  Parental tracking in the postfire wood decay ascomycete Daldinia loculata using highly variable nuclear gene loci , 2003, Molecular ecology.

[44]  R. Jeewon,et al.  A re-evaluation of the evolutionary relationships within the Xylariaceae based on ribosomal and protein-coding gene sequences , 2009 .

[45]  M. E. Barr Prodromus to nonlichenized, pyrenomycetous members of class Hymenoascomycetes , 1990 .

[46]  Jolanta Miadlikowska,et al.  Community Analysis Reveals Close Affinities Between Endophytic and Endolichenic Fungi in Mosses and Lichens , 2010, Microbial Ecology.

[47]  P. Green,et al.  Base-calling of automated sequencer traces using phred. I. Accuracy assessment. , 1998, Genome research.

[48]  Ulf Arup,et al.  Implementing a cumulative supermatrix approach for a comprehensive phylogenetic study of the Teloschistales (Pezizomycotina, Ascomycota). , 2012, Molecular phylogenetics and evolution.

[49]  H. J. Woerdenbag,et al.  Endophytes: exploiting biodiversity for the improvement of natural product-based drug discovery , 2008 .

[50]  T. Osono Phyllosphere fungi on leaf litter of Fagus crenata: occurrence, colonization, and succession , 2002 .

[51]  J. Rogers,et al.  The genus Biscogniauxia , 1998 .

[52]  W. Wcislo,et al.  Symbiotic fungi alter plant chemistry that discourages leaf-cutting ants. , 2013, The New phytologist.

[53]  M. Kolařík,et al.  The phylogenetic position of Obolarina dryophila (Xylariales) , 2010, Mycological Progress.

[54]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[55]  F. Lutzoni,et al.  Diversity and host range of foliar fungal endophytes: are tropical leaves biodiversity hotspots? , 2007, Ecology.

[56]  A. Whalley The xylariaceous way of life , 1996 .

[57]  Yuan-ming Luo,et al.  Isolation and structural elucidation of proline-containing cyclopentapeptides from an endolichenic Xylaria sp. , 2011, Journal of natural products.

[58]  R. Gazis,et al.  Culture-based study of endophytes associated with rubber trees in Peru reveals a new class of Pezizomycotina: Xylonomycetes. , 2012, Molecular phylogenetics and evolution.

[59]  David L. Hawksworth,et al.  Molecular phylogeny of Coniochaetales. , 2006, Mycological research.

[60]  Jolanta Miadlikowska,et al.  A phylogenetic estimation of trophic transition networks for ascomycetous fungi: are lichens cradles of symbiotrophic fungal diversification? , 2009, Systematic biology.

[61]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[62]  D. Hawksworth,et al.  A new species of Rhopalostroma with a Nodulisporium anamorph from Thailand , 1985 .

[63]  A. Arnold,et al.  Fungal endophytes: diversity and functional roles. , 2009, The New phytologist.

[64]  G. Rambold,et al.  Chemotaxonomic and phylogenetic studies of Thamnomyces (Xylariaceae) , 2010, Mycoscience.

[65]  Jesús Martín,et al.  Hypoxylon pulicicidum sp. nov. (Ascomycota, Xylariales), a Pantropical Insecticide-Producing Endophyte , 2012, PloS one.

[66]  S. Lumyong,et al.  Emarcea castanopsidicola gen. et sp. nov. from Thailand, a new xylariaceous taxon based on morphology and DNA sequences , 2004 .

[67]  M. Stadler,et al.  A polyphasic taxonomy of Daldinia (Xylariaceae) , 2014, Studies in mycology.

[68]  J. Rogers,et al.  ENTOLEUCA MAMMATA COMB. NOV. FOR HYPOXYLON MAMMATUM AND THE GENUS ENTOLEUCA , 1996 .

[69]  N. Hywel-Jones,et al.  Study of endophytic Xylariaceae in Thailand: diversity and taxonomy inferred from rDNA sequence analyses with saprobes forming fruit bodies in the field , 2008, Mycoscience.

[70]  A. Arnold,et al.  Endophytic fungi as biocontrol agents of Theobroma cacao pathogens , 2008 .

[71]  Alexandros Stamatakis,et al.  RAxML-VI-HPC: maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models , 2006, Bioinform..

[72]  A. Elizabeth Arnold,et al.  Fungal Endophytes in Aboveground Tissues of Desert Plants: Infrequent in Culture, but Highly Diverse and Distinctive Symbionts , 2015, Microbial Ecology.

[73]  V. Rubio,et al.  Molecular phylogenetic studies within the Xylariaceae based on ribosomal DNA sequences , 2008 .

[74]  David L. Hawksworth,et al.  The fungal dimension of biodiversity: magnitude, significance, and conservation , 1991 .

[75]  J. Rogers,et al.  JUMILLERA AND WALLEYA, NEW GENERA SEGREGATED FROM BSCOGNIAUXIA , 1997 .

[76]  Y. Ju,et al.  Theissenia rogersii sp. nov. and phylogenetic position of Theissenia. , 2007, Mycologia.

[77]  D. J. Lodge,et al.  Three host-specific Xylaria species , 1994 .

[78]  Rytas Vilgalys,et al.  Fungal Community Analysis by Large-Scale Sequencing of Environmental Samples , 2005, Applied and Environmental Microbiology.

[79]  G. Samuels,et al.  Fungal endophytes of Spondias mombin leaves in Brazil , 1999 .

[80]  J. Rogers Xylaria cubensis and its anamorph Xylocoremium flabelliforme, Xylaria allantoidea, and Xylaria poitei in continental United States. , 1984 .

[81]  M. Abou-zaid,et al.  John Thor Arnason, Phytochemistry, Medicinal Plant and Ethnopharmacology Laboratory, University of Ottawa , 2008 .

[82]  K. O’Donnell Molecular phylogeny of the Nectria haematococca-Fusarium solani species complex , 2000 .

[83]  D. Aanen,et al.  Levels of specificity of Xylaria species associated with fungus‐growing termites: a phylogenetic approach , 2009, Molecular ecology.

[84]  Ignazio Carbone,et al.  Mobyle SNAP Workbench: a web-based analysis portal for population genetics and evolutionary genomics , 2014, Bioinform..

[85]  T. Osono Colonization and succession of fungi during decomposition of Swida controversa leaf litter. , 2005, Mycologia.

[86]  Lynne Boddy,et al.  Fungal decomposition of wood. Its biology and ecology. , 1988 .

[87]  M. Ohlson,et al.  Forestry impacts on the hidden fungal biodiversity associated with bryophytes. , 2014, FEMS microbiology ecology.

[88]  Ó. Salazar,et al.  Phylogenetic study of Hypoxylon and related genera based on ribosomal ITS sequences , 2000 .

[89]  M. C. González,et al.  Muscodor yucatanensis, a new endophytic ascomycete from Mexican chakah, Bursera simaruba. , 2009 .

[90]  A. Arnold,et al.  Activity against Plasmodium falciparum of Lactones Isolated from the Endophytic Fungus Xylaria sp. , 2008 .

[91]  O. Petrini,et al.  Variability among isolates of Xylaria cubensis as determined by isozyme analysis and somatic incompatibility tests , 1995 .

[92]  M. Stadler,et al.  Theissenia reconsidered, including molecular phylogeny of the type species T. pyrenocrata and a new genus Durotheca (Xylariaceae, Ascomycota) , 2013, IMA fungus.

[93]  Y. Ju,et al.  Three xylariaceous fungi with scolecosporous conidia , 1993 .

[94]  William G. Mckendree,et al.  ESPRIT: estimating species richness using large collections of 16S rRNA pyrosequences , 2009, Nucleic acids research.

[95]  S. Hambleton,et al.  Vialaea insculpta revisited , 2013 .

[96]  M. Stadler,et al.  Cryptic species related to Daldinia concentrica and D. eschscholzii, with notes on D. bakeri. , 2004, Mycological research.

[97]  A. Miller,et al.  Molecular systematics of the Sordariales: the order and the family Lasiosphaeriaceae redefined , 2004, Mycologia.

[98]  Alexandros Stamatakis,et al.  PICS-Ord: unlimited coding of ambiguous regions by pairwise identity and cost scores ordination , 2011, BMC Bioinformatics.

[99]  R. Sukumar,et al.  Endophytic fungal communities in woody perennials of three tropical forest types of the Western Ghats, southern India , 2011, Biodiversity and Conservation.

[100]  Julian H. Miller,et al.  A monograph of the world species of Hypoxylon , 1962 .

[101]  G. Ding,et al.  Ambuic acid and torreyanic acid derivatives from the endolichenic fungus Pestalotiopsis sp. , 2009, Journal of natural products.

[102]  Martin Hartmann,et al.  Introducing mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities , 2009, Applied and Environmental Microbiology.

[103]  Jianchu Xu,et al.  Towards a natural classification and backbone tree for Sordariomycetes , 2015, Fungal Diversity.

[104]  Alfred Möller Phycomyceten und Ascomyceten : Untersuchungen aus Brasilien , 1901 .

[105]  J. Stenlid,et al.  Genetic differentiation in Eurasian populations of the postfire ascomycete Daldinia loculata , 2001, Molecular ecology.

[106]  G. Carroll,et al.  Studies on the incidence of coniferous needle endophytes in the Pacific Northwest , 1978 .

[107]  K. Hyde,et al.  Towards unraveling relationships in Xylariomycetidae (Sordariomycetes) , 2015, Fungal Diversity.

[108]  O. Eriksson,et al.  Outline of Ascomycota , 2004 .

[109]  M. Blackwell The fungi: 1, 2, 3 ... 5.1 million species? , 2011, American journal of botany.

[110]  A. Pappinen,et al.  Endophytic fungi isolated from Khaya anthotheca in Ghana , 2012 .

[111]  J. Kohlmeyer,et al.  Fungi on Juncus and Spartina: New marine species of Anthostomella, with a list of marine fungi known on Spartina* , 2002 .

[112]  J. Rogers The Xylariaceae: Systematic, Biological and Evolutionary Aspects , 1979 .

[113]  D. Hawksworth The magnitude of fungal diversity: the 1.5 million species estimate revisited * * Paper presented at , 2001 .

[114]  J. Rogers Xylaria magnoliae sp.nov. and comments on several other fruit-inhabiting species , 1979 .

[115]  J. Rogers,et al.  A Revision of the Genus Hypoxylon. Mycologia Memoir No. 20 , 1998 .

[116]  David L. Hawksworth,et al.  Ainsworth & Bisby's Dictionary of the Fungi , 1972 .

[117]  J. Palmer,et al.  Evidence from beta-tubulin phylogeny that microsporidia evolved from within the fungi. , 2000, Molecular biology and evolution.

[118]  K. Hyde Fungi from palms. XXI. The genus Seynesia , 1995 .

[119]  K. Hyde,et al.  Phylogenetic utility of protein (RPB2, β-tubulin) and ribosomal (LSU, SSU) gene sequences in the systematics of Sordariomycetes (Ascomycota, Fungi) , 2007, Antonie van Leeuwenhoek.

[120]  A. Leuchtmann,et al.  Endophytic species of Xylaria: cultural and isozymic studies , 2011 .

[121]  E. Kellogg,et al.  Testing for Phylogenetic Conflict Among Molecular Data Sets in the Tribe Triticeae (Gramineae) , 1996 .

[122]  J. Rogers,et al.  Jumillera and Whalleya, new genera segregated from Biscogniauxia , 1997 .

[123]  O. Petrini,et al.  Fungal endophytes from the leaves and twigs of Quercus ilex L. from England, Majorca and Switzerland. , 1994, The New phytologist.

[124]  C. Schardl,et al.  Symbioses of grasses with seedborne fungal endophytes. , 2004, Annual review of plant biology.

[125]  G. Strobel,et al.  Pestalotiopsis guepinii, a taxol-producing endophyte of the Wollemi pine, Wollemia nobilis , 1997 .

[126]  F. Graf,et al.  FUNGAL ENDOPHYTES OF DRYAS OCTOPETALA FROM A HIGH ARCTIC POLAR SEMIDESERT AND FROM THE SWISS ALPS , 1995 .

[127]  R. Gazis,et al.  Diversity of fungal endophytes in leaves and stems of wild rubber trees (Hevea brasiliensis) in Peru , 2010 .

[128]  O. Petrini,et al.  Taxonomy of some Xylaria species and xylariaceous endophytes by isozyme electrophoresis , 1992 .

[129]  G. Mueller,et al.  Fungal biodiversity: what do we know? What can we predict? , 2007, Biodiversity and Conservation.

[130]  K. O’Donnell,et al.  Two divergent intragenomic rDNA ITS2 types within a monophyletic lineage of the fungus Fusarium are nonorthologous. , 1997, Molecular phylogenetics and evolution.

[131]  J. Azevedo,et al.  Symptomless infection of banana and maize by endophytic fungi impairs photosynthetic efficiency. , 2000, The New phytologist.

[132]  J. Rogers Thoughts and musings on tropical Xylariaceae , 2000 .

[133]  R. Lanfear,et al.  Partitionfinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. , 2012, Molecular biology and evolution.

[134]  M. Stadler,et al.  Lepraric acid derivatives as chemotaxonomic markers in Hypoxylon aeruginosum, Chlorostroma subcubisporum and C. cyaninum, sp. nov. , 2010, Fungal biology.

[135]  Guo,et al.  Endophytic fungi associated with lichens in Baihua mountain of Beijing, China , 2007 .

[136]  O. Eriksson Outline of the Ascomycetes-1993 , 1993 .

[137]  Lynn Y. Huynh,et al.  Tandem repeat regions within the Burkholderia pseudomallei genome and their application for high resolution genotyping , 2007, BMC Microbiology.

[138]  M. Piepenbring,et al.  Recognition of hypoxyloid and xylarioid Entonaema species and allied Xylaria species from a comparison of holomorphic morphology, HPLC profiles, and ribosomal DNA sequences , 2008, Mycological Progress.

[139]  Katalin Molnár,et al.  Phylogenetic analyses of eurotiomycetous endophytes reveal their close affinities to Chaetothyriales, Eurotiales, and a new order - Phaeomoniellales. , 2015, Molecular phylogenetics and evolution.

[140]  Rytas Vilgalys,et al.  Taxonomic misidentification in public DNA databases. , 2003, The New phytologist.

[141]  D. J. Lodge,et al.  Distribution and dispersal of Xylaria endophytes in two tree species in Puerto Rico , 1998 .

[142]  J. Rogers,et al.  PODOSORDARIA : A REDEFINITION BASED ON CULTURAL STUDIES OF THE TYPE SPECIES, P. MEXICANA, AND TWO NEW SPECIES , 1998 .

[143]  M. Stadler,et al.  Pigment chemistry, taxonomy and phylogeny of the Hypoxyloideae (Xylariaceae). , 2006, Revista iberoamericana de micologia.

[144]  J. Rogers,et al.  Camillea, Jongiella and light-spored species of Hypoxylon , 1989 .

[145]  C. Rosa,et al.  Fungal endophyte β-diversity associated with Myrtaceae species in an Andean Patagonian forest (Argentina) and an Atlantic forest (Brazil) , 2014 .

[146]  Mercedes S. Foster,et al.  Biodiversity of Fungi: Inventory and Monitoring Methods , 2004 .

[147]  F. Lutzoni,et al.  Phylogenetic relationships, host affinity, and geographic structure of boreal and arctic endophytes from three major plant lineages. , 2007, Molecular phylogenetics and evolution.

[148]  R. Henrik Nilsson,et al.  Intraspecific ITS Variability in the Kingdom Fungi as Expressed in the International Sequence Databases and Its Implications for Molecular Species Identification , 2008, Evolutionary bioinformatics online.

[149]  G. Rambold,et al.  Molecular and morphological evidence for the delimitation of Xylaria hypoxylon , 2009, Mycologia.

[150]  I. Chen,et al.  Secondary Metabolites from the Endophytic Fungus Xylaria cubensis , 2014 .

[151]  D. Tilman,et al.  Fungal endophytes limit pathogen damage in a tropical tree , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[152]  M. Kolařík,et al.  Diversity of xylariaceous symbionts in Xiphydria woodwasps: role of vector and a host tree , 2010 .

[153]  A. Arnold,et al.  Interannual variation and host affiliations of endophytic fungi associated with ferns at La Selva, Costa Rica , 2014, Mycologia.

[154]  B. Hall,et al.  Phylogenetic relationships among ascomycetes: evidence from an RNA polymerse II subunit. , 1999, Molecular biology and evolution.

[155]  J. Rogers,et al.  Phylogenetic and taxonomic revision of Lopadostoma , 2014, Persoonia.

[156]  P. Coley,et al.  Culturing and direct PCR suggest prevalent host generalism among diverse fungal endophytes of tropical forest grasses , 2011, Mycologia.

[157]  G. Samuels,et al.  Preliminary study of endophytic fungi in a tropical palm , 1990 .

[158]  D. Hibbett,et al.  Toward a phylogenetic classification of the leotiomycetes based on rDNA data. , 2006, Mycologia.

[159]  J. Rogers,et al.  A Revision of the Genus Hypoxylon , 1996 .

[160]  P. Bridge,et al.  On the unreliability of published DNA sequences. , 2003, The New phytologist.

[161]  K. Hyde,et al.  The Xylariales: A monophyletic order containing 7 families , 2003 .

[162]  K. Rodrigues The foliar fungal endophytes of the Amazonian palm Euterpe oleracea , 1994 .

[163]  T. Osono Role of phyllosphere fungi of forest trees in the development of decomposer fungal communities and decomposition processes of leaf litter. , 2006, Canadian journal of microbiology.

[164]  J. Stenlid,et al.  Local population structure of the wood decay ascomycete Daldinia loculata , 2001 .

[165]  Bettina M. J. Engelbrecht,et al.  Fungal endophytes nearly double minimum leaf conductance in seedlings of a neotropical tree species , 2007, Journal of Tropical Ecology.

[166]  R. Halvorsen,et al.  Amplicon‐pyrosequencing‐based detection of compositional shifts in bryophyte‐associated fungal communities along an elevation gradient , 2013, Molecular ecology.

[167]  Martin Grube,et al.  New insights into classification and evolution of the Lecanoromycetes (Pezizomycotina, Ascomycota) from phylogenetic analyses of three ribosomal RNA- and two protein-coding genes. , 2006, Mycologia.

[168]  Peter M. Vitousek,et al.  Fungal endophyte communities reflect environmental structuring across a Hawaiian landscape , 2012, Proceedings of the National Academy of Sciences.

[169]  O. Petrini,et al.  Endophytic fungi associated with palms , 2000 .

[170]  J. Rogers,et al.  Molecular phylogeny of Hypoxylon and closely related genera. , 2005, Mycologia.

[171]  R. Dennis FURTHER NOTES ON TROPICAL AMERICAN XYLARIACEAE. , 1957 .

[172]  Rytas Vilgalys,et al.  Diversity and phylogenetic affinities of foliar fungal endophytes in loblolly pine inferred by culturing and environmental PCR , 2007, Mycologia.

[173]  T. Bruns,et al.  ITS primers with enhanced specificity for basidiomycetes ‐ application to the identification of mycorrhizae and rusts , 1993, Molecular ecology.

[174]  L. Tedersoo,et al.  Novel aspects in the life cycle and biotrophic interactions in Pezizomycetes (Ascomycota, Fungi) , 2013, Molecular ecology.