Compositional dependence of the strain-free optical band gap in InxGa1−xN layers

The effect of strain on the compositional and optical properties of a set of epitaxial single layers of InxGa1−xN was studied. Indium content was measured free from the effects of strain by Rutherford backscattering spectrometry. Accurate knowledge of the In mole fraction, combined with x-ray diffraction measurements, allows perpendicular strain (ezz) to be evaluated. Optical band gaps were determined by absorption spectroscopy and corrected for strain. Following this approach, the strain free dependence of the optical band gap in InxGa1−xN alloys was determined for x⩽0.25. Our results indicate an “anomalous,” linear, dependence of the energy gap on the In content, at room temperature: Eg(x)=3.39–3.57x eV. Extension of this behavior to higher concentrations is discussed on the basis of reported results.

[1]  Theeradetch Detchprohm,et al.  Relaxation Process of the Thermal Strain in the GaN/α-Al2O3 Heterostructure and Determination of the Intrinsic Lattice Constants of GaN Free from the Strain , 1992 .

[2]  Fischer,et al.  New approach in equilibrium theory for strained layer relaxation. , 1994, Physical review letters.

[3]  L. Vegard,et al.  Die Konstitution der Mischkristalle und die Raumfüllung der Atome , 1921 .

[4]  O. Ambacher,et al.  Characterization of InGaN thin films using high-resolution x-ray diffraction , 2000 .

[5]  Alex Zunger,et al.  Resonant hole localization and anomalous optical bowing in InGaN alloys , 1999 .

[6]  Lawrence R. Doolittle,et al.  Algorithms for the rapid simulation of Rutherford backscattering spectra , 1985 .

[7]  Zhe Chuan Feng,et al.  Optical properties of InxGa1−xN alloys grown by metalorganic chemical vapor deposition , 1998 .

[8]  James S. Speck,et al.  Structural and optical properties of GaN laterally overgrown on Si(111) by metalorganic chemical vapor deposition using an AlN buffer layer , 1999 .

[9]  Alan Francis Wright,et al.  Elastic properties of zinc-blende and wurtzite AlN, GaN, and InN , 1997 .

[10]  Matthew D. McCluskey,et al.  LARGE BAND GAP BOWING OF INXGA1-XN ALLOYS , 1998 .

[11]  John C. Roberts,et al.  Optical band gap dependence on composition and thickness of InxGa1−xN (0 , 1999 .

[12]  Isamu Akasaki,et al.  Optical band gap in Ga1−xInxN (0 , 1998 .

[13]  Nakamura,et al.  The roles of structural imperfections in InGaN-based blue light-emitting diodes and laser diodes , 1998, Science.

[14]  Direct evidence of spontaneous quantum dot formation in a thick InGaN epilayer , 2000 .

[15]  Salah M. Bedair,et al.  Phase separation and ordering coexisting in InxGa1−xN grown by metal organic chemical vapor deposition , 1999 .

[16]  Pierre Gibart,et al.  Indium incorporation above 800 °C during metalorganic vapor phase epitaxy of InGaN , 1999 .

[17]  J. Baranowski,et al.  Characterization of InGaN/GaN heterostructures by means of RBS/channeling , 2000 .

[18]  Alan Francis Wright,et al.  Bowing parameters for zinc‐blende Al1−xGaxN and Ga1−xInxN , 1995 .

[19]  H. Riechert,et al.  Determination of the chemical composition of distorted InGaN/GaN heterostructures from x-ray diffraction data , 1999 .

[20]  L. Romano,et al.  Large and composition-dependent band gap bowing in InxGa1-xN alloys , 1999 .

[21]  H. Amano,et al.  Structural and Optical Properties of Nitride-Based Heterostructure and Quantum-Well Structure , 1996 .

[22]  R. Martin,et al.  Exciton localization and the Stokes’ shift in InGaN epilayers , 1999 .

[23]  L. Romano,et al.  Structural and optical properties of pseudomorphic InxGa1−xN alloys , 1998 .

[24]  I. Moerman,et al.  Elastic strain in In0.18Ga0.82N layer: A combined x-ray diffraction and Rutherford backscattering/channeling study , 1999 .

[25]  Shuji Nakamura,et al.  Role of self-formed InGaN quantum dots for exciton localization in the purple laser diode emitting at 420 nm , 1997 .

[26]  Shuji Nakamura,et al.  Luminescences from localized states in InGaN epilayers , 1997 .

[27]  J. W. Matthews,et al.  Defects in epitaxial multilayers: III. Preparation of almost perfect multilayers , 1976 .

[28]  W. Paszkowicz X-ray powder diffraction data for indium nitride , 1999, Powder Diffraction.

[29]  Robert W. Martin,et al.  Origin of Luminescence from InGaN Diodes , 1999 .

[30]  Jacques I. Pankove,et al.  A GaN/4H-SiC heterojunction bipolar transistor with operation up to 300°C , 1999 .

[31]  S. Nakamura,et al.  Biaxial strain dependence of exciton resonance energies in wurtzite GaN , 1997 .

[32]  R. Martin,et al.  Intrinsic infrared luminescence from InGaN epilayers. , 1999 .