Highly reversible open framework nanoscale electrodes for divalent ion batteries.

The reversible insertion of monovalent ions such as lithium into electrode materials has enabled the development of rechargeable batteries with high energy density. Reversible insertion of divalent ions such as magnesium would allow the creation of new battery chemistries that are potentially safer and cheaper than lithium-based batteries. Here we report that nanomaterials in the Prussian Blue family of open framework materials, such as nickel hexacyanoferrate, allow for the reversible insertion of aqueous alkaline earth divalent ions, including Mg(2+), Ca(2+), Sr(2+), and Ba(2+). We show unprecedented long cycle life and high rate performance for divalent ion insertion. Our results represent a step forward and pave the way for future development in divalent batteries.

[1]  Haoshen Zhou,et al.  Suppressed Activation Energy for Interfacial Charge Transfer of a Prussian Blue Analog Thin Film Electrode with Hydrated Ions (Li+, Na+, and Mg2+) , 2013 .

[2]  John B Goodenough,et al.  A superior low-cost cathode for a Na-ion battery. , 2013, Angewandte Chemie.

[3]  A. K. Shukla,et al.  Lithium Economy: Will It Get the Electric Traction? , 2013, The journal of physical chemistry letters.

[4]  Yi Cui,et al.  A high-rate and long cycle life aqueous electrolyte battery for grid-scale energy storage , 2012, Nature Communications.

[5]  Hongkyung Lee,et al.  Sodium zinc hexacyanoferrate with a well-defined open framework as a positive electrode for sodium ion batteries. , 2012, Chemical communications.

[6]  John B Goodenough,et al.  Prussian blue: a new framework of electrode materials for sodium batteries. , 2012, Chemical communications.

[7]  Haoshen Zhou,et al.  Fabrication of a Cyanide-Bridged Coordination Polymer Electrode for Enhanced Electrochemical Ion Storage Ability , 2012 .

[8]  M. Giorgetti,et al.  Structural characterization of electrodeposited copper hexacyanoferrate films by using a spectroscopic multi-technique approach. , 2012, Physical chemistry chemical physics : PCCP.

[9]  Yi Cui,et al.  Tunable reaction potentials in open framework nanoparticle battery electrodes for grid-scale energy storage. , 2012, ACS nano.

[10]  Yi Cui,et al.  Copper hexacyanoferrate battery electrodes with long cycle life and high power. , 2011, Nature communications.

[11]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[12]  Yi Cui,et al.  Nickel hexacyanoferrate nanoparticle electrodes for aqueous sodium and potassium ion batteries. , 2011, Nano letters.

[13]  G. Soloveichik Battery technologies for large-scale stationary energy storage. , 2011, Annual review of chemical and biomolecular engineering.

[14]  Y. Moritomo,et al.  Thin Film Electrode of Prussian Blue Analogue for Li-ion Battery , 2011 .

[15]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[16]  Kenichi Kato,et al.  Extended d-Electron State of Fe(CN)6 Unit in Prussian Blue Analogue , 2011 .

[17]  Yi Cui,et al.  The Effect of Insertion Species on Nanostructured Open Framework Hexacyanoferrate Battery Electrodes , 2011 .

[18]  M. Giorgetti,et al.  Improved performances of electrodes based on Cu2+-loaded copper hexacyanoferrate for hydrogen peroxide detection , 2010 .

[19]  Jiulin Wang,et al.  Mesoporous magnesium manganese silicate as cathode materials for rechargeable magnesium batteries. , 2010, Chemical communications.

[20]  J. Goodenough,et al.  Challenges for Rechargeable Li Batteries , 2010 .

[21]  Doron Aurbach,et al.  On the Way to Rechargeable Mg Batteries: The Challenge of New Cathode Materials† , 2010 .

[22]  Y. Moritomo,et al.  Size Dependent Cation Channel in Nanoporous Prussian Blue Lattice , 2009 .

[23]  D. Aurbach,et al.  A review on the problems of the solid state ions diffusion in cathodes for rechargeable Mg batteries , 2009 .

[24]  A. Mitelman,et al.  Progress in Rechargeable Magnesium Battery Technology , 2007 .

[25]  J. Itié,et al.  Thermally induced electron transfer in a CsCoFe Prussian blue derivative: the specific role of the alkali-metal ion. , 2004, Angewandte Chemie.

[26]  J. Yakhmi,et al.  Structure, insertion electrochemistry, and magnetic properties of a new type of substitutional solid solutions of copper, nickel, and iron hexacyanoferrates/hexacyanocobaltates. , 2002, Inorganic chemistry.

[27]  M. Sakata,et al.  Structural Transition Induced by Charge-Transfer in RbMn(Fe(CN)6) —Investigation by Synchrotron-Radiation X-ray Powder Analysis— , 2002 .

[28]  Shen-ming Chen Preparation, characterization, and electrocatalytic oxidation properties of iron, cobalt, nickel, and indium hexacyanoferrate , 2002 .

[29]  M. Armand,et al.  Issues and challenges facing rechargeable lithium batteries , 2001, Nature.

[30]  G. Amatucci,et al.  Investigation of Yttrium and Polyvalent Ion Intercalation into Nanocrystalline Vanadium Oxide , 2001 .

[31]  E. Levi,et al.  Prototype systems for rechargeable magnesium batteries , 2000, Nature.

[32]  O. Haas,et al.  Magnesium Insertion Electrodes for Rechargeable Nonaqueous Batteries — A Competitive Alternative to Lithium? , 1999 .

[33]  F. Scholz,et al.  Lattice contractions and expansions accompanying the electrochemical conversions of Prussian blue and the reversible and irreversible insertion of rubidium and thallium ions , 1996 .

[34]  F. Scholz,et al.  The Formal Potentials of Solid Metal Hexacyanometalates , 1996 .

[35]  S. Ovshinsky,et al.  A Nickel Metal Hydride Battery for Electric Vehicles , 1993, Science.

[36]  I. Uchida,et al.  Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues , 1986 .

[37]  Vernon D. Neff,et al.  Electrochromism in the mixed-valence hexacyanides. 2. Kinetics of the reduction of ruthenium purple and Prussian blue , 1982 .

[38]  Kingo Itaya,et al.  Prussian‐blue‐modified electrodes: An application for a stable electrochromic display device , 1982 .

[39]  M. Eckhoff,et al.  Electrochromism in the mixed-valence hexacyanides. 1. Voltammetric and spectral studies of the oxidation and reduction of thin films of Prussian blue , 1981 .

[40]  John B. Goodenough,et al.  LixCoO2 (0, 1980 .

[41]  Peter Fischer,et al.  Neutron diffraction study of Prussian Blue, Fe4[Fe(CN)6]3.xH2O. Location of water molecules and long-range magnetic order , 1980 .

[42]  D. Schwarzenbach,et al.  The crystal structure of Prussian Blue: Fe4[Fe(CN)6]3.xH2O , 1977 .

[43]  J. Besenhard,et al.  Topotactic redox reactions of the channel type chalcogenides Mo3S4 and Mo3Se4 , 1977 .

[44]  M. Tobe,et al.  Primary isotope effects and general base catalysis in the hydrolysis of trans-dichloro(1,9-diamino-3,7-diazanonane)cobalt(III) cations , 1975 .

[45]  F. D. Miles,et al.  Structures and Formulæ of the Prussian Blues and Related Compounds , 1936, Nature.