Simulation and analysis on control effectiveness of TRVs in district heating systems

Abstract Based upon an existing building and heating system with thermostatic radiator valves (TRVs), an integrated model is developed for simulating the thermal and hydraulic behavior of the heating system under various operation cases. According to the simulation results, the effectiveness of TRVs in reducing overheating has been studied. The results indicate that when the set value of the TRV is kept at 2–3, its effectiveness in reducing the overheating phenomena caused by an excessive water flow rate is less than 60%. If the overheating phenomena is caused by an excessive supply water temperature and radiator area, the effectiveness of the TRV can reach about 80%; the TRV's effect becomes more obvious with increasing overheating degree; however, about 20%–40% of overheating loss still needs to be resolved by improving improper operation adjustment and design. Considering these results, a control strategy is proposed, in which the supply water temperature is adjusted daily according to the flow performance of the system, and the pump is operated with frequency conversion and constant pressure difference. Further simulation indicates that, under the new control strategy, the variation of the heat supply quantity of the system can match the heat load change, and the flow rate of the system can be controlled at an appropriate range.