JOINT MODELING OF MULTIPLE TIME SERIES VIA THE BETA PROCESS WITH APPLICATION TO MOTION CAPTURE SEGMENTATION

We propose a Bayesian nonparametric approach to the problem of jointly modeling multiple related time series. Our model discovers a latent set of dynamical behaviors shared among the sequences, and segments each time series into regions defined by a subset of these behaviors. Using a beta process prior, the size of the behavior set and the sharing pattern are both inferred from data. We develop Markov chain Monte Carlo (MCMC) methods based on the Indian buffet process representation of the predictive distribution of the beta process. Our MCMC inference algorithm efficiently adds and removes behaviors via novel split-merge moves as well as data-driven birth and death proposals, avoiding the need to consider a truncated model. We demonstrate promising results on unsupervised segmentation of human motion capture data. 1. Introduction. Classical time series analysis has generally focused on the study of a single (potentially multivariate) time series. Instead, we consider analyzing collections of related time series, motivated by the increasing abundance of such data in many domains. In this work we explore this problem by considering time series produced by motion capture sensors on the joints of people performing exercise routines. An individual recording provides a multivariate time series that can be segmented into types of exercises (e.g., jumping jacks, arm-circles, and twists). Each exercise type describes locally coherent and simple dynamics that persist over a segment of time. We have such motion capture recordings from multiple individuals, each of whom performs some subset of a global set of exercises, as shown in Figure1. Our goal is to discover the set of global exercise types (“behaviors”) and their occurrences in each individual’s data stream. We would like to take advantage of the overlap between individuals: if a jumping-jack behavior is discovered in one sequence, then it can be used to model data for other individuals.

[1]  Jure Leskovec,et al.  Community Structure in Large Networks: Natural Cluster Sizes and the Absence of Large Well-Defined Clusters , 2008, Internet Math..

[2]  Lawrence Carin,et al.  Music Analysis Using Hidden Markov Mixture Models , 2007, IEEE Transactions on Signal Processing.

[3]  N. Zhang,et al.  Bayesian Variable Selection in Structured High-Dimensional Covariate Spaces With Applications in Genomics , 2010 .

[4]  Matthew L. Davidson,et al.  The neuroimaging of emotion. , 2008 .

[5]  Andrea Lancichinetti,et al.  Benchmarks for testing community detection algorithms on directed and weighted graphs with overlapping communities. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[6]  Derek Greene,et al.  Tracking the Evolution of Communities in Dynamic Social Networks , 2010, 2010 International Conference on Advances in Social Networks Analysis and Mining.

[7]  D. Stoyan,et al.  Statistical Analysis and Modelling of Spatial Point Patterns , 2008 .

[8]  Zhuowen Tu,et al.  Image Segmentation by Data-Driven Markov Chain Monte Carlo , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[9]  Daniel A. Keim,et al.  An Efficient Approach to Clustering in Large Multimedia Databases with Noise , 1998, KDD.

[10]  F. Markowetz,et al.  The genomic and transcriptomic architecture of 2,000 breast tumours reveals novel subgroups , 2012, Nature.

[11]  Nicola G. Best,et al.  Modeling the Impact of Traffic-Related Air Pollution on Childhood Respiratory Illness , 2002 .

[12]  Warner Marzocchi,et al.  On the Increase of Background Seismicity Rate during the 1997-1998 Umbria-Marche, Central Italy, Sequence: Apparent Variation or Fluid-Driven Triggering? , 2010 .

[13]  E. Levina,et al.  Community extraction for social networks , 2010, Proceedings of the National Academy of Sciences.

[14]  George C. Runger,et al.  Feature selection via regularized trees , 2012, The 2012 International Joint Conference on Neural Networks (IJCNN).

[15]  A. Gelfand,et al.  Handbook of spatial statistics , 2010 .

[16]  A. Hawkes Spectra of some self-exciting and mutually exciting point processes , 1971 .

[17]  Jesper Møller,et al.  Hierarchical spatial point process analysis for a plant community with high biodiversity , 2009, Environmental and Ecological Statistics.

[18]  M. Genton,et al.  Short‐Term Wind Speed Forecasting for Power System Operations , 2012 .

[19]  Yosihiko Ogata,et al.  Immediate and updated forecasting of aftershock hazard , 2006 .

[20]  Radford M. Neal,et al.  Splitting and merging components of a nonconjugate Dirichlet process mixture model , 2007 .

[21]  Geoffrey E. Hinton,et al.  Modeling Human Motion Using Binary Latent Variables , 2006, NIPS.

[22]  R. Altman Mixed Hidden Markov Models , 2007 .

[23]  Y. Ogata,et al.  Modelling heterogeneous space–time occurrences of earthquakes and its residual analysis , 2003 .

[24]  Ji Zhu,et al.  Consistency of community detection in networks under degree-corrected stochastic block models , 2011, 1110.3854.

[25]  M E J Newman,et al.  Finding and evaluating community structure in networks. , 2003, Physical review. E, Statistical, nonlinear, and soft matter physics.

[26]  B. Bollobás The evolution of random graphs , 1984 .

[27]  T. Utsu On the nature of three Alaskan aftershock sequences of 1957 and 1958 , 1962 .

[28]  Y. Ogata,et al.  The Centenary of the Omori Formula for a Decay Law of Aftershock Activity , 1995 .

[29]  Padraig Cunningham,et al.  Benchmarking community detection methods on social media data , 2013, ArXiv.

[30]  Christopher A. Penfold,et al.  Nonparametric Bayesian inference for perturbed and orthologous gene regulatory networks , 2012, Bioinform..

[31]  Michael I. Jordan,et al.  Bayesian Nonparametric Methods for Learning Markov Switching Processes , 2010, IEEE Signal Processing Magazine.

[32]  Udaya B. Kogalur,et al.  spikeslab: Prediction and Variable Selection Using Spike and Slab Regression , 2010, R J..

[33]  Sach Mukherjee,et al.  Network inference using informative priors , 2008, Proceedings of the National Academy of Sciences.

[34]  B. Singh,et al.  Customer-Rush Near Warranty Expiration Limit, and Nonparametric Hazard Rate Estimation From Known Mileage Accumulation Rates , 2006, IEEE Transactions on Reliability.

[35]  H. Akaike Factor analysis and AIC , 1987 .

[36]  Stefan M. Wild,et al.  Variable selection and sensitivity analysis using dynamic trees, with an application to computer code performance tuning , 2011, 1108.4739.

[37]  Radford M. Neal,et al.  A Split-Merge Markov chain Monte Carlo Procedure for the Dirichlet Process Mixture Model , 2004 .

[38]  G A Allen,et al.  Effects of ozone and other pollutants on the pulmonary function of adult hikers. , 1998, Environmental health perspectives.

[39]  Marina Vannucci,et al.  Variable selection for discriminant analysis with Markov random field priors for the analysis of microarray data , 2011, Bioinform..

[40]  Adam A. Margolin,et al.  The Cancer Cell Line Encyclopedia enables predictive modeling of anticancer drug sensitivity , 2012, Nature.

[41]  Lucile M. Jones,et al.  When and where the aftershock activity was depressed: Contrasting decay patterns of the proximate large earthquakes in southern California , 2003 .

[42]  Jukka-Pekka Onnela,et al.  Geographic Constraints on Social Network Groups , 2010, PloS one.

[43]  M. Genton,et al.  Powering Up With Space-Time Wind Forecasting , 2010 .

[44]  J. Raduà,et al.  Voxel-wise meta-analysis of grey matter changes in obsessive-compulsive disorder. , 2009, The British journal of psychiatry : the journal of mental science.

[45]  Fred Glover,et al.  Tabu Search - Part II , 1989, INFORMS J. Comput..

[46]  Carl T. Bergstrom,et al.  Mapping Change in Large Networks , 2008, PloS one.

[47]  Lada A. Adamic,et al.  The political blogosphere and the 2004 U.S. election: divided they blog , 2005, LinkKDD '05.

[48]  T. Utsu A statistical study on the occurrence of aftershocks. , 1961 .

[49]  M. J. Bayarri,et al.  Criteria for Bayesian model choice with application to variable selection , 2012, 1209.5240.

[50]  T. J. Mitchell,et al.  Bayesian Variable Selection in Linear Regression , 1988 .

[51]  T. Utsu Aftershocks and Earthquake Statistics (4) : Analyses of the Distribution of Earthquakes in Magnitude, Time and Space with Special Consideration to Clustering Characteristics of Earthquake Occurrence(2) , 1972 .

[52]  Vladimir Pavlovic,et al.  A dynamic Bayesian network approach to figure tracking using learned dynamic models , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[53]  Terence P. Speed,et al.  Bayesian Inference of Signaling Network Topology in a Cancer Cell Line , 2012, Bioinform..

[54]  Chris J. Oates,et al.  Joint Structure Learning of Multiple Non-Exchangeable Networks , 2014, AISTATS.

[55]  Aki Niemi,et al.  Bayesian Spatial Point Process Modeling of Line Transect Data , 2010 .

[56]  Chong Wang,et al.  A Split-Merge MCMC Algorithm for the Hierarchical Dirichlet Process , 2012, ArXiv.

[57]  Peter D. Hoff,et al.  Latent Space Approaches to Social Network Analysis , 2002 .

[58]  Suchi Saria,et al.  Discovering shared and individual latent structure in multiple time series , 2010, ArXiv.

[59]  Y. Ogata Space-Time Point-Process Models for Earthquake Occurrences , 1998 .

[60]  Yosihiko Ogata,et al.  A non‐stationary epidemic type aftershock sequence model for seismicity prior to the December 26, 2004 M 9.1 Sumatra‐Andaman Islands mega‐earthquake , 2013 .

[61]  Sujit K. Ghosh,et al.  A variable selection approach to monotonic regression with Bernstein polynomials , 2011 .

[62]  Karsten M. Borgwardt,et al.  Whole-genome sequencing of multiple Arabidopsis thaliana populations , 2011, Nature Genetics.

[63]  H. Akaike Prediction and Entropy , 1985 .

[64]  Michael I. Jordan,et al.  Hierarchical Dirichlet Processes , 2006 .

[65]  L. Folinsbee,et al.  Ozone concentration and pulmonary response relationships for 6.6-hour exposures with five hours of moderate exercise to 0.08, 0.10, and 0.12 ppm. , 1990, The American review of respiratory disease.

[66]  Kari Pulli,et al.  Style translation for human motion , 2005, SIGGRAPH 2005.

[67]  Jun S. Liu Peskun's theorem and a modified discrete-state Gibbs sampler , 1996 .

[68]  Nicholas Deichmann,et al.  High fluid pressure and triggered earthquakes in the enhanced geothermal system in Basel, Switzerland , 2011 .

[69]  Stuart J. Russell,et al.  Dynamic bayesian networks: representation, inference and learning , 2002 .

[70]  Mitsuhiro Matsu'ura,et al.  The 3‐D tectonic stress fields in and around Japan inverted from centroid moment tensor data of seismic events , 2010 .

[71]  J. Friedman Stochastic gradient boosting , 2002 .

[72]  Yosihiko Ogata,et al.  Modeling seismic swarms triggered by aseismic transients , 2009 .

[73]  Y. Ogata Significant improvements of the space-time ETAS model for forecasting of accurate baseline seismicity , 2011 .

[74]  Vladimir Pavlovic,et al.  Learning Switching Linear Models of Human Motion , 2000, NIPS.

[75]  Andrea Lancichinetti,et al.  Community detection algorithms: a comparative analysis: invited presentation, extended abstract , 2009, VALUETOOLS.

[76]  T. Utsu Aftershocks and Earthquake Statistics(1) : Some Parameters Which Characterize an Aftershock Sequence and Their Interrelations , 1970 .

[77]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[78]  Gregor Giebel,et al.  The State-Of-The-Art in Short-Term Prediction of Wind Power. A Literature Overview , 2003 .

[79]  H. Chipman,et al.  BART: Bayesian Additive Regression Trees , 2008, 0806.3286.

[80]  Edoardo M. Airoldi,et al.  Stochastic blockmodel approximation of a graphon: Theory and consistent estimation , 2013, NIPS.

[81]  Zoubin Ghahramani,et al.  Modeling Dyadic Data with Binary Latent Factors , 2006, NIPS.

[82]  David J. Fleet,et al.  This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE Gaussian Process Dynamical Model , 2007 .

[83]  J. E. Griffin,et al.  Order-Based Dependent Dirichlet Processes , 2006 .

[84]  Emily B. Fox,et al.  Effective Split-Merge Monte Carlo Methods for Nonparametric Models of Sequential Data , 2012, NIPS.

[85]  Cristopher Moore,et al.  Phase transition in the detection of modules in sparse networks , 2011, Physical review letters.

[86]  Giada Adelfio,et al.  Hybrid kernel estimates of space–time earthquake occurrence rates using the epidemic-type aftershock sequence model , 2009 .

[87]  S. MacEachern Decision Theoretic Aspects of Dependent Nonparametric Processes , 2000 .

[88]  Marc G. Genton,et al.  Blowing in the wind , 2007 .

[89]  D. Dunson Nonparametric Bayes local partition models for random effects. , 2009, Biometrika.

[90]  Hirotugu Akaike,et al.  On entropy maximization principle , 1977 .

[91]  A. Monahan The Probability Distribution of Sea Surface Wind Speeds. Part I: Theory and SeaWinds Observations , 2006 .

[92]  B. Schölkopf,et al.  Modeling Human Motion Using Binary Latent Variables , 2007 .

[93]  Thomas E. Nichols,et al.  Meta Analysis of Functional Neuroimaging Data via Bayesian Spatial Point Processes , 2011, Journal of the American Statistical Association.

[94]  C. Rosenzweig,et al.  Simulating changes in regional air pollution over the eastern United States due to changes in global and regional climate and emissions , 2004 .

[95]  Marjolein V. Smith,et al.  Prediction of lung function response for populations exposed to a wide range of ozone conditions , 2012, Inhalation toxicology.

[96]  Paul Switzer,et al.  Reassessing the relationship between ozone and short-term mortality in U.S. urban communities , 2009, Inhalation toxicology.

[97]  Ramesh Sharda,et al.  Modeling Brand Post Popularity in Online Social Networks , 2012 .

[98]  Lisa Feldman Barrett,et al.  Functional grouping and cortical–subcortical interactions in emotion: A meta-analysis of neuroimaging studies , 2008, NeuroImage.

[99]  Yosihiko Ogata,et al.  Statistical Models for Earthquake Occurrences and Residual Analysis for Point Processes , 1988 .

[100]  H. Akaike,et al.  Information Theory and an Extension of the Maximum Likelihood Principle , 1973 .

[101]  Toby Joyce,et al.  Reliability estimation from field return data , 2009, Lifetime data analysis.

[102]  Chris J. Oates,et al.  Toward a Multisubject Analysis of Neural Connectivity , 2014, Neural Computation.

[103]  Chung-Kuan Cheng,et al.  Towards efficient hierarchical designs by ratio cut partitioning , 1989, 1989 IEEE International Conference on Computer-Aided Design. Digest of Technical Papers.

[104]  Roger D. Peng,et al.  The Exposure–Response Curve for Ozone and Risk of Mortality and the Adequacy of Current Ozone Regulations , 2006, Environmental health perspectives.

[105]  Michael I. Jordan,et al.  Bayesian Nonparametric Inference of Switching Dynamic Linear Models , 2010, IEEE Transactions on Signal Processing.

[106]  Craig Boutilier,et al.  Context-Specific Independence in Bayesian Networks , 1996, UAI.

[107]  Vladimir Pavlovic,et al.  Discovering clusters in motion time-series data , 2003, 2003 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2003. Proceedings..

[108]  R. Wolpert,et al.  Spatial Inference of Nitrate Concentrations in Groundwater , 2010 .

[109]  S L Zeger,et al.  The National Morbidity, Mortality, and Air Pollution Study. Part I: Methods and methodologic issues. , 2000, Research report.

[110]  B. Ostro,et al.  The association of air pollution and mortality: examining the case for inference. , 1993, Archives of environmental health.

[111]  D. Dunson MULTIVARIATE KERNEL PARTITION PROCESS MIXTURES. , 2010, Statistica Sinica.

[112]  J. Russell,et al.  Core affect, prototypical emotional episodes, and other things called emotion: dissecting the elephant. , 1999 .

[113]  T. Ideker,et al.  Differential network biology , 2012, Molecular systems biology.

[114]  Veronika Rockova,et al.  EMVS: The EM Approach to Bayesian Variable Selection , 2014 .

[115]  Edward A. Bender,et al.  The Asymptotic Number of Labeled Graphs with Given Degree Sequences , 1978, J. Comb. Theory A.

[116]  Vincent R. Gray Climate Change 2007: The Physical Science Basis Summary for Policymakers , 2007 .

[117]  Yee Whye Teh,et al.  The Infinite Factorial Hidden Markov Model , 2008, NIPS.

[118]  Carl E. Rasmussen,et al.  A choice model with infinitely many latent features , 2006, ICML.

[119]  Chris Hans Bayesian lasso regression , 2009 .

[120]  Xinxin Zhu,et al.  Short-Term Spatio-Temporal Wind Power Forecast in Robust Look-ahead Power System Dispatch , 2014, IEEE Transactions on Smart Grid.

[121]  Judea Pearl,et al.  Reverend Bayes on Inference Engines: A Distributed Hierarchical Approach , 1982, AAAI.

[122]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[123]  N. Hjort Nonparametric Bayes Estimators Based on Beta Processes in Models for Life History Data , 1990 .

[124]  D. Vere-Jones,et al.  Stochastic Declustering of Space-Time Earthquake Occurrences , 2002 .

[125]  Chihiro Hashimoto,et al.  Changes in seismic activity following the 2011 Tohoku-oki earthquake: Effects of pore fluid pressure , 2012 .

[126]  Nicola J. Rinaldi,et al.  Transcriptional Regulatory Networks in Saccharomyces cerevisiae , 2002, Science.

[127]  Jean-Loup Guillaume,et al.  Fast unfolding of communities in large networks , 2008, 0803.0476.

[128]  Michael C. Horsch,et al.  Dynamic Bayesian networks , 1990 .

[129]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockstructures , 2001 .

[130]  Jiancang Zhuang,et al.  Properties of the probability distribution associated with the largest event in an earthquake cluster and their implications to foreshocks. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[131]  E. George,et al.  Journal of the American Statistical Association is currently published by American Statistical Association. , 2007 .

[132]  Michael I. Jordan,et al.  Sharing Features among Dynamical Systems with Beta Processes , 2009, NIPS.

[133]  R. Wolpert,et al.  Spatial Regression for Marked Point Processes , 2008 .

[134]  Boleslaw K. Szymanski,et al.  Overlapping community detection in networks: The state-of-the-art and comparative study , 2011, CSUR.

[135]  F. Dominici,et al.  Ozone and short-term mortality in 95 US urban communities, 1987-2000. , 2004, JAMA.

[136]  M E J Newman,et al.  Modularity and community structure in networks. , 2006, Proceedings of the National Academy of Sciences of the United States of America.

[137]  M. Mézard,et al.  Information, Physics, and Computation , 2009 .

[138]  Satoru Miyano,et al.  Combining microarrays and biological knowledge for estimating gene networks via Bayesian networks , 2003, Computational Systems Bioinformatics. CSB2003. Proceedings of the 2003 IEEE Bioinformatics Conference. CSB2003.

[139]  J. Møller,et al.  Log Gaussian Cox Processes , 1998 .

[140]  I. Herbert,et al.  This is Your Brain on Politics , 2008 .

[141]  D. Stoyan,et al.  Recent applications of point process methods in forestry statistics , 2000 .

[142]  Irving John Good,et al.  The Estimation of Probabilities: An Essay on Modern Bayesian Methods , 1965 .

[143]  Katharine Hayhoe,et al.  Sensitivity of future ozone concentrations in the northeast USA to regional climate change , 2008 .

[144]  A Haines,et al.  Effects of ambient temperature on the incidence of myocardial infarction , 2009, Heart.

[145]  P. Bickel,et al.  A nonparametric view of network models and Newman–Girvan and other modularities , 2009, Proceedings of the National Academy of Sciences.

[146]  R. Poldrack Inferring Mental States from Neuroimaging Data: From Reverse Inference to Large-Scale Decoding , 2011, Neuron.

[147]  M. Aoki,et al.  State space modeling of multiple time series , 1991 .

[148]  R. Waagepetersen,et al.  Modern Statistics for Spatial Point Processes * , 2007 .

[149]  J. Schwartz,et al.  The National Morbidity, Mortality, and Air Pollution Study. Part II: Morbidity and mortality from air pollution in the United States. , 2000, Research report.

[150]  Kai Chen,et al.  Influence of temperature to the short-term effects of various ozone metrics on daily mortality in Suzhou, China , 2013 .

[151]  Yongdai Kim NONPARAMETRIC BAYESIAN ESTIMATORS FOR COUNTING PROCESSES , 1999 .

[152]  Kristen A. Lindquist,et al.  The brain basis of emotion: A meta-analytic review , 2012, Behavioral and Brain Sciences.

[153]  S. Nielsen The stochastic EM algorithm: estimation and asymptotic results , 2000 .

[154]  R. Tibshirani,et al.  An introduction to the bootstrap , 1993 .

[155]  Jernej Barbic,et al.  Segmenting Motion Capture Data into Distinct Behaviors , 2004, Graphics Interface.

[156]  A. Raftery,et al.  Model‐based clustering for social networks , 2007 .

[157]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[158]  Erik B. Sudderth,et al.  Nonparametric discovery of activity patterns from video collections , 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[159]  Edoardo M. Airoldi,et al.  Mixed Membership Stochastic Blockmodels , 2007, NIPS.

[160]  Michael I. Jordan,et al.  Hierarchical Beta Processes and the Indian Buffet Process , 2007, AISTATS.

[161]  J Schwartz,et al.  The distributed lag between air pollution and daily deaths. , 2000, Epidemiology.

[162]  William Q. Meeker,et al.  Early Detection of Reliability Problems Using Information From Warranty Databases , 2002, Technometrics.

[163]  Harry Shum,et al.  Image segmentation by data driven Markov chain Monte Carlo , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[164]  T. Griffiths,et al.  Bayesian nonparametric latent feature models , 2007 .

[165]  Sara Sjöstedt de Luna,et al.  Asymptotic properties of a stochastic EM algorithm for mixtures with censored data , 2010 .

[166]  Ute Beyer,et al.  Bayesian Forecasting And Dynamic Models , 2016 .

[167]  George E. Tita,et al.  Self-Exciting Point Process Modeling of Crime , 2011 .

[168]  H. Zou,et al.  Regularization and variable selection via the elastic net , 2005 .

[169]  Jure Leskovec,et al.  Defining and evaluating network communities based on ground-truth , 2012, KDD 2012.

[170]  Eric Kalendra Space-time Modeling of Health Effects while Controlling for Spatially Varying Exposure Surfaces. , 2010 .

[171]  Michael I. Jordan,et al.  Bayesian Nonparametric Latent Feature Models , 2011 .

[172]  Y. Ogata The asymptotic behaviour of maximum likelihood estimators for stationary point processes , 1978 .

[173]  J. Wang,et al.  Shape restricted nonparametric regression with Bernstein polynomials , 2012, Comput. Stat. Data Anal..

[174]  Jung-Hun Woo,et al.  Impacts of global climate change and emissions on regional ozone and fine particulate matter concentrations over the United States , 2007 .

[175]  Mason A. Porter,et al.  Comparing Community Structure to Characteristics in Online Collegiate Social Networks , 2008, SIAM Rev..

[176]  Yosihiko Ogata,et al.  Seismicity anomaly scenario prior to the major recurrent earthquakes off the east coast of Miyagi Prefecture, northern Japan , 2006 .

[177]  D. Vere-Jones Stochastic Models for Earthquake Occurrence , 1970 .

[178]  Béla Bollobás,et al.  A Probabilistic Proof of an Asymptotic Formula for the Number of Labelled Regular Graphs , 1980, Eur. J. Comb..

[179]  T. Utsu,et al.  A Relation between the Area of After-shock Region and the Energy of Main-shock , 1955 .

[180]  D. Cox Some Statistical Methods Connected with Series of Events , 1955 .

[181]  George M. Church,et al.  Aligning gene expression time series with time warping algorithms , 2001, Bioinform..

[182]  Michael A. West,et al.  Bayesian Forecasting and Dynamic Models (2nd edn) , 1997, J. Oper. Res. Soc..

[183]  J. Kingman,et al.  Completely random measures. , 1967 .

[184]  Pierre Pinson,et al.  Wind Energy: Forecasting Challenges for Its Operational Management , 2013, 1312.6471.

[185]  Christian J. Stoeckert,et al.  Bayesian variable selection and data integration for biological regulatory networks , 2006, math/0610034.

[186]  Haitao Liao,et al.  Some aspects in estimating warranty and post‐warranty repair demands , 2013 .

[187]  David B. Dahl,et al.  Sequentially-Allocated Merge-Split Sampler for Conjugate and Nonconjugate Dirichlet Process Mixture Models , 2005 .

[188]  Martin A. Lindquist,et al.  Meta-analysis of functional neuroimaging data using Bayesian nonparametric binary regression , 2012, 1206.6674.

[189]  Esteban Moro Egido,et al.  The dynamical strength of social ties in information spreading , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[190]  I. Good Nonparametric roughness penalties for probability densities , 1971 .

[191]  Yiannis Kompatsiaris,et al.  Community detection in Social Media , 2012, Data Mining and Knowledge Discovery.

[192]  Adrian Baddeley,et al.  Centrum Voor Wiskunde En Informatica Probability, Networks and Algorithms Probability, Networks and Algorithms Extrapolating and Interpolating Spatial Patterns Extrapolating and Interpolating Spatial Patterns , 2022 .

[193]  Haidong Kan,et al.  Effect of the Interaction Between Outdoor Air Pollution and Extreme Temperature on Daily Mortality in Shanghai, China , 2011, Journal of epidemiology.

[194]  Kerrie Mengersen,et al.  Does temperature modify short-term effects of ozone on total mortality in 60 large eastern US communities? An assessment using the NMMAPS data. , 2008, Environment international.

[195]  Yosihiko Ogata,et al.  Detection of precursory relative quiescence before great earthquakes through a statistical model , 1992 .

[196]  Lars Kai Hansen,et al.  Infinite multiple membership relational modeling for complex networks , 2011, 2011 IEEE International Workshop on Machine Learning for Signal Processing.

[197]  L. Tierney Rejoinder: Markov Chains for Exploring Posterior Distributions , 1994 .

[198]  Carl E. Rasmussen,et al.  Factorial Hidden Markov Models , 1997 .

[199]  Yosihiko Ogata,et al.  Seismicity and geodetic anomalies in a wide area preceding the Niigata-Ken-Chuetsu earthquake of 23 October 2004, central Japan , 2007 .

[200]  Sylvia Richardson,et al.  Evolutionary Stochastic Search for Bayesian model exploration , 2010, 1002.2706.

[201]  Michael I. Jordan,et al.  Factorial Hidden Markov Models , 1995, Machine Learning.

[202]  Gerassimos A. Papadopoulos,et al.  OPERATIONAL EARTHQUAKE FORECASTING. State of Knowledge and Guidelines for Utilization , 2011 .

[203]  Dirk Husmeier,et al.  Non-homogeneous dynamic Bayesian networks with Bayesian regularization for inferring gene regulatory networks with gradually time-varying structure , 2012, Machine Learning.

[204]  Dirk Husmeier,et al.  Gene Regulatory Network Reconstruction by Bayesian Integration of Prior Knowledge and/or Different Experimental Conditions , 2008, J. Bioinform. Comput. Biol..

[205]  P. Green Reversible jump Markov chain Monte Carlo computation and Bayesian model determination , 1995 .

[206]  Rich Caruana,et al.  Inductive Transfer for Bayesian Network Structure Learning , 2007, ICML Unsupervised and Transfer Learning.

[207]  Wolfgang P. Lehrach,et al.  Segmenting bacterial and viral DNA sequence alignments with a trans‐dimensional phylogenetic factorial hidden Markov model , 2009 .

[208]  Stephen G. Walker,et al.  Sampling the Dirichlet Mixture Model with Slices , 2006, Commun. Stat. Simul. Comput..

[209]  Martin Rosvall,et al.  Maps of random walks on complex networks reveal community structure , 2007, Proceedings of the National Academy of Sciences.

[210]  J. Friedman Multivariate adaptive regression splines , 1990 .

[211]  T. Utsu Aftershocks and Earthquake Statistics(2) : Further Investigation of Aftershocks and Other Earthquake Sequences Based on a New Classification of Earthquake Sequences , 1971 .

[212]  Scott L Zeger,et al.  Temperature and mortality in 11 cities of the eastern United States. , 2002, American journal of epidemiology.

[213]  Robert B. Gramacy,et al.  Dynamic Trees for Learning and Design , 2009, 0912.1586.

[214]  Chao A. Hsiung,et al.  Shape restricted regression with random Bernstein polynomials , 2007, 0708.1054.

[215]  C. Hwang,et al.  Convergence rates of the Gibbs sampler, the Metropolis algorithm and other single-site updating dynamics , 1993 .

[216]  V. Chavez-Demoulin,et al.  High-frequency financial data modeling using Hawkes processes , 2012 .

[217]  Stefan Emeis,et al.  Wind Energy Meteorology , 2013 .

[218]  F. Dominici,et al.  Effect modification by community characteristics on the short-term effects of ozone exposure and mortality in 98 US communities. , 2008, American journal of epidemiology.

[219]  Axel Tenbusch,et al.  Nonparametric curve estimation with bernstein estimates , 1997 .

[220]  T. Snijders,et al.  Estimation and Prediction for Stochastic Blockmodels for Graphs with Latent Block Structure , 1997 .

[221]  Kazuyuki Aihara,et al.  Forecasting large aftershocks within one day after the main shock , 2013, Scientific reports.

[222]  J. Ibrahim,et al.  Power prior distributions for regression models , 2000 .

[223]  Yosihiko Ogata,et al.  Statistical model for standard seismicity and detection of anomalies by residual analysis , 1989 .

[224]  Radford M. Neal,et al.  Bayesian Detection of Infrequent Differences in Sets of Time Series with Shared Structure , 2006, NIPS.

[225]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[226]  Prahlad T. Ram,et al.  A pan-cancer proteomic perspective on The Cancer Genome Atlas , 2014, Nature Communications.

[227]  Kristof Van Laerhoven,et al.  Quantitative Analysis of Community Detection Methods for Longitudinal Mobile Data , 2013, 2013 International Conference on Social Intelligence and Technology.

[228]  Roger D. Peng,et al.  A Space–Time Conditional Intensity Model for Evaluating a Wildfire Hazard Index , 2005 .

[229]  Jitendra Malik,et al.  Normalized Cuts and Image Segmentation , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[230]  Andrea Lancichinetti,et al.  Detecting the overlapping and hierarchical community structure in complex networks , 2008, 0802.1218.

[231]  Michael I. Jordan,et al.  A Sticky HDP-HMM With Application to Speaker Diarization , 2009, 0905.2592.

[232]  Shinji Toda,et al.  Using the 2011 Mw 9.0 off the Pacific coast of Tohoku Earthquake to test the Coulomb stress triggering hypothesis and to calculate faults brought closer to failure , 2011 .

[233]  L. Knopoff,et al.  Statistical Short-Term Earthquake Prediction , 1987, Science.

[234]  Bruce A. Reed,et al.  A Critical Point for Random Graphs with a Given Degree Sequence , 1995, Random Struct. Algorithms.

[235]  Mason A. Porter,et al.  Communities in Networks , 2009, ArXiv.

[236]  Santo Fortunato,et al.  Community detection in graphs , 2009, ArXiv.

[237]  Adam H. Monahan,et al.  The Probability Distribution of Land Surface Wind Speeds , 2011 .

[238]  Y. Ogata Seismicity Analysis through Point-process Modeling: A Review , 1999 .

[239]  Satoshi Ide,et al.  Statistic analysis of swarm activities around the Boso Peninsula, Japan: Slow slip events beneath Tokyo Bay? , 2011 .

[240]  David Heckerman,et al.  Knowledge Representation and Inference in Similarity Networks and Bayesian Multinets , 1996, Artif. Intell..

[241]  M. R. Leadbetter Poisson Processes , 2011, International Encyclopedia of Statistical Science.

[242]  Patrick Danaher,et al.  The joint graphical lasso for inverse covariance estimation across multiple classes , 2011, Journal of the Royal Statistical Society. Series B, Statistical methodology.

[243]  Peter J. Bickel,et al.  Pseudo-likelihood methods for community detection in large sparse networks , 2012, 1207.2340.

[244]  Kevin Duh,et al.  Jointly Labeling Multiple Sequences: A Factorial HMM Approach , 2005, ACL.

[245]  Roger D. Peng,et al.  On the distribution of wildfire sizes , 2003 .

[246]  Ramón Díaz-Uriarte,et al.  Gene selection and classification of microarray data using random forest , 2006, BMC Bioinformatics.

[247]  Yosihiko Ogata,et al.  Exploratory analysis of earthquake clusters by likelihood-based trigger models , 2001, Journal of Applied Probability.

[248]  A. Raftery,et al.  Strictly Proper Scoring Rules, Prediction, and Estimation , 2007 .

[249]  M. Newman,et al.  Finding community structure in very large networks. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[250]  Shinji Toda,et al.  Widespread seismicity excitation throughout central Japan following the 2011 M=9.0 Tohoku earthquake and its interpretation by Coulomb stress transfer , 2011 .

[251]  David G. Streets,et al.  Effects of 2000–2050 global change on ozone air quality in the United States , 2008 .

[252]  T. Gneiting Quantiles as optimal point forecasts , 2011 .

[253]  M. Girolami,et al.  Inferring Signaling Pathway Topologies from Multiple Perturbation Measurements of Specific Biochemical Species , 2010, Science Signaling.

[254]  Yosihiko Ogata,et al.  Detection of anomalous seismicity as a stress change sensor , 2003 .

[255]  A. Baddeley,et al.  Non‐ and semi‐parametric estimation of interaction in inhomogeneous point patterns , 2000 .

[256]  L. Tierney Markov Chains for Exploring Posterior Distributions , 1994 .

[257]  D. Kendall Stochastic Processes and Population Growth , 1949 .

[258]  K. Luan Phan,et al.  Valence, gender, and lateralization of functional brain anatomy in emotion: a meta-analysis of findings from neuroimaging , 2003, NeuroImage.

[259]  Y. Ogata,et al.  Analysis of temporal and spatial heterogeneity of magnitude frequency distribution inferred from earthquake catalogues , 1993 .

[260]  M. West,et al.  Bayesian forecasting and dynamic models , 1989 .

[261]  Terran Lane,et al.  Bayesian Discovery of Multiple Bayesian Networks via Transfer Learning , 2013, 2013 IEEE 13th International Conference on Data Mining.

[262]  Santo Fortunato,et al.  Finding Statistically Significant Communities in Networks , 2010, PloS one.

[263]  Jukka-Pekka Onnela,et al.  Community Structure in Time-Dependent, Multiscale, and Multiplex Networks , 2009, Science.

[264]  F. Dominici,et al.  Reduced hierarchical models with application to estimating health effects of simultaneous exposure to multiple pollutants , 2013, Journal of the Royal Statistical Society. Series C, Applied statistics.

[265]  Elchanan Mossel,et al.  Spectral redemption in clustering sparse networks , 2013, Proceedings of the National Academy of Sciences.

[266]  Ralph Adolphs,et al.  The Human Amygdala and Emotion , 1999 .

[267]  A. Hawkes,et al.  A cluster process representation of a self-exciting process , 1974, Journal of Applied Probability.

[268]  申 芝仙,et al.  Dynamic Bayesian Network , 2010, Encyclopedia of Machine Learning.

[269]  Trevor Hastie,et al.  Regularization Paths for Generalized Linear Models via Coordinate Descent. , 2010, Journal of statistical software.

[270]  David J. Fleet,et al.  Gaussian Process Dynamical Models , 2005, NIPS.

[271]  M. Newman,et al.  Hierarchical structure and the prediction of missing links in networks , 2008, Nature.

[272]  J. Møller,et al.  Statistical Inference and Simulation for Spatial Point Processes , 2003 .

[273]  T. Ferguson A Bayesian Analysis of Some Nonparametric Problems , 1973 .

[274]  H. Chipman,et al.  Bayesian CART Model Search , 1998 .

[275]  J. Pearl Causality: Models, Reasoning and Inference , 2000 .

[276]  L Morawska,et al.  Ozone modifies associations between temperature and cardiovascular mortality: analysis of the NMMAPS data , 2007, Occupational and Environmental Medicine.

[277]  S. L. Scott Bayesian Methods for Hidden Markov Models , 2002 .

[278]  A. Nobel,et al.  Finding large average submatrices in high dimensional data , 2009, 0905.1682.

[279]  R. Dickerson,et al.  Observed relationships of ozone air pollution with temperature and emissions , 2009 .

[280]  Andrew B. Lawson,et al.  Statistical Methods in Spatial Epidemiology , 2001 .

[281]  Donald Geman,et al.  Stochastic Relaxation, Gibbs Distributions, and the Bayesian Restoration of Images , 1984, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[282]  Daryl J. Daley,et al.  An Introduction to the Theory of Point Processes , 2013 .