AGGREGATION OF DISTRIBUTIONS OF INFILTRATION PARAMETERS USING ITS AGGREGATION CRITERIA DERIVED FROM PHILIP'S EQUATION

本研究は水移動に関わる土壌パラメータが分布している場合の領域平均浸透量を算定するに際に, 分布量が集約して扱えるかを明らかにすることが目的である. まず, 水移動に関係する5つの土壌パラメータそれぞれに対するパラメータ平均法の集約化規範を Philip 式に基づいて導いた. この集約化規範は, 土壌パラメータの平均値で表される浸透量集約化指標という新たに提案した指標に対する不等式として, 5つのパラメータ全てについて統一的に表すことができた. この集約化規範を用いて, 同一サイト内で観測された土壌パラメータの分布統計量を用いて, 分布が浸透量算定に与える影響を検討したところ, 飽和透水係数と初期飽和度の集約化は土壌毎に定まる集約化指標と許容誤差, パラメータの変動係数等の集約化条件の両方に大きく依存するが, それ以外のパラメータの変動は小さくあまり影響を与えないことを明らかにした.

[1]  J. D. Cooper,et al.  Variability of unsaturated zone water transport parameters: implications for hydrological modelling. 1. In situ measurements , 1993 .

[2]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[3]  David Russo,et al.  Upscaling of hydraulic conductivity in partially saturated heterogeneous porous formation , 1992 .

[4]  Guma'a Sayed. Guma'a Spatial variability of in situ available water , 1978 .

[5]  J. R. Philip,et al.  Moisture movement in porous materials under temperature gradients , 1957 .

[6]  R. G. Hills,et al.  Application of Similar Media Scaling and Conditional Simulation for Modeling Water Flow and Tritium Transport at the Las Cruces Trench Site , 1996 .

[7]  Lyman S. Willardson,et al.  Sample Size Estimates in Permeability Studies , 1965 .

[8]  G. Dagan,et al.  Upscaling of permeability of anisotropic heterogeneous formations: 2. General structure and small perturbation analysis , 1993 .

[9]  David Russo,et al.  Statistical analysis of spatial variability in unsaturated flow parameters , 1992 .

[10]  Jan W. Hopmans,et al.  Two‐dimensional steady state unsaturated water flow in heterogeneous soils with autocorrelated soil hydraulic properties , 1988 .

[11]  P. Groffman,et al.  Soil moisture variability within remote sensing pixels , 1992 .

[12]  Roger E. Smith,et al.  A Monte Carlo Analysis of the hydrologic effects of spatial variability of infiltration , 1979 .

[13]  R. McCuen,et al.  Statistical analysis of the Brooks-Corey and the Green-Ampt parameters across soil textures , 1981 .

[14]  Fei Chen,et al.  Impact of Land-Surface Moisture Variability on Local Shallow Convective Cumulus and Precipitation in Large-Scale Models , 1994 .

[15]  D. R. Nielsen,et al.  Spatial variability of field-measured soil-water properties , 1973 .

[16]  Murugesu Sivapalan,et al.  Spatial Heterogeneity and Scale in the Infiltration Response of Catchments , 1986 .

[17]  Peter K. Kitanidis,et al.  Analysis of the Spatial Structure of Properties of Selected Aquifers , 1985 .

[18]  Ajay Kumar,et al.  Modelling spatial variability of saturated hydraulic conductivity using Fourier series analysis , 1994 .

[19]  A. W. Warrick,et al.  13 – Spatial Variability of Soil Physical Properties in the Field , 1980 .

[20]  Murugesu Sivapalan,et al.  Scale issues in hydrological modelling: A review , 1995 .

[21]  Peter S. Eagleson,et al.  Climate, soil, and vegetation: 3. A simplified model of soil moisture movement in the liquid phase , 1978 .

[22]  P. Indelman,et al.  Upscaling of permeability of anisotropic heterogeneous formations: 3. Applications , 1993 .

[23]  Gedeon Dagan,et al.  Upscaling of permeability of anisotropic heterogeneous formations: 1. The general framework , 1993 .

[24]  Ken'ichirou Kosugi,et al.  Three‐parameter lognormal distribution model for soil water retention , 1994 .