The unifying theory of scaling in thermal convection: the updated prefactors

Abstract The unifying theory of scaling in thermal convection (Grossmann & Lohse, J. Fluid. Mech., vol. 407, 2000, pp. 27–56; henceforth the GL theory) suggests that there are no pure power laws for the Nusselt and Reynolds numbers as function of the Rayleigh and Prandtl numbers in the experimentally accessible parameter regime. In Grossmann & Lohse (Phys. Rev. Lett., vol. 86, 2001, pp. 3316–3319) the dimensionless parameters of the theory were fitted to 155 experimental data points by Ahlers & Xu (Phys. Rev. Lett., vol. 86, 2001, pp. 3320–3323) in the regime $3\times 1{0}^{7} \leq \mathit{Ra}\leq 3\times 1{0}^{9} $ and $4\leq \mathit{Pr}\leq 34$ and Grossmann & Lohse (Phys. Rev. E, vol. 66, 2002, p. 016305) used the experimental data point from Qiu & Tong (Phys. Rev. E, vol. 64, 2001, p. 036304) and the fact that $\mathit{Nu}(\mathit{Ra}, \mathit{Pr})$ is independent of the parameter $a$ , which relates the dimensionless kinetic boundary thickness with the square root of the wind Reynolds number, to fix the Reynolds number dependence. Meanwhile the theory is, on the one hand, well-confirmed through various new experiments and numerical simulations; on the other hand, these new data points provide the basis for an updated fit in a much larger parameter space. Here we pick four well-established (and sufficiently distant) $\mathit{Nu}(\mathit{Ra}, \mathit{Pr})$ data points and show that the resulting $\mathit{Nu}(\mathit{Ra}, \mathit{Pr})$ function is in agreement with almost all established experimental and numerical data up to the ultimate regime of thermal convection, whose onset also follows from the theory. One extra $\mathit{Re}(\mathit{Ra}, \mathit{Pr})$ data point is used to fix $\mathit{Re}(\mathit{Ra}, \mathit{Pr})$ . As $\mathit{Re}$ can depend on the definition and the aspect ratio, the transformation properties of the GL equations are discussed in order to show how the GL coefficients can easily be adapted to new Reynolds number data while keeping $\mathit{Nu}(\mathit{Ra}, \mathit{Pr})$ unchanged.

[1]  Sheng‐Qi Zhou,et al.  Heat-flux measurement in high-Prandtl-number turbulent Rayleigh-Bénard convection. , 2002, Physical review letters.

[2]  H. Fernholz Boundary Layer Theory , 2001 .

[3]  Jacques Chaussy,et al.  Observation of the Ultimate Regime in Rayleigh-Bénard Convection , 1997 .

[4]  G. Ahlers,et al.  Prandtl-number dependence of heat transport in turbulent Rayleigh-Bénard convection. , 2001, Physical review letters.

[5]  H. Rossby,et al.  A study of Bénard convection with and without rotation , 1969, Journal of Fluid Mechanics.

[6]  Detlef Lohse,et al.  Heat transfer and large scale dynamics in turbulent Rayleigh-Bénard convection , 2008, 0811.0471.

[7]  A. Thess,et al.  Mean temperature profiles in turbulent Rayleigh–Bénard convection of water , 2009, Journal of Fluid Mechanics.

[8]  D. Lohse,et al.  Logarithmic temperature profiles in the ultimate regime of thermal convection , 2012, 1208.2597.

[9]  Conditional statistics of thermal dissipation rate in turbulent Rayleigh-Bénard convection , 2012, The European physical journal. E, Soft matter.

[10]  J. Niemela,et al.  Confined turbulent convection , 2002, Journal of Fluid Mechanics.

[11]  Richard J. A. M. Stevens,et al.  Boundary layer structure in turbulent thermal convection and its consequences for the required numerical resolution , 2010, 1109.6870.

[12]  G. He,et al.  Elliptic model for space-time correlations in turbulent shear flows. , 2006, Physical review. E, Statistical, nonlinear, and soft matter physics.

[13]  Roberto Verzicco,et al.  Sidewall finite-conductivity effects in confined turbulent thermal convection , 2002, Journal of Fluid Mechanics.

[14]  L. Skrbek,et al.  Efficiency of heat transfer in turbulent Rayleigh-Bénard convection. , 2011, Physical review letters.

[15]  Richard J. A. M. Stevens,et al.  Comparison between two- and three-dimensional Rayleigh–Bénard convection , 2013, Journal of Fluid Mechanics.

[16]  Detlef Lohse,et al.  Scaling in thermal convection: a unifying theory , 2000, Journal of Fluid Mechanics.

[17]  Jackson R. Herring,et al.  Prandtl number dependence of Nusselt number in direct numerical simulations , 2000, Journal of Fluid Mechanics.

[18]  Eberhard Bodenschatz,et al.  Heat transport by turbulent Rayleigh–Bénard convection for Pr ≃ 0.8 and 3 × 1012 ≲ Ra ≲ 1015: aspect ratio Γ = 0.50 , 2012, 1205.0108.

[19]  Eric Brown,et al.  Heat transport by turbulent Rayleigh–Bénard convection in cylindrical cells with aspect ratio one and less , 2004, Journal of Fluid Mechanics.

[20]  S. Grossmann Scaling in thermal convection: A unifying view , 2022 .

[21]  D. Lohse,et al.  Optimal Prandtl number for heat transfer in rotating Rayleigh–Bénard convection , 2009, 0912.0816.

[22]  G. Ahlers,et al.  Effect of sidewall conductance on heat-transport measurements for turbulent Rayleigh-Bénard convection. , 2000, Physical review. E, Statistical, nonlinear, and soft matter physics.

[23]  P. Tong,et al.  Large-scale velocity structures in turbulent thermal convection. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[24]  D. Lohse,et al.  Small-Scale Properties of Turbulent Rayleigh-Bénard Convection , 2010 .

[25]  Eberhard Bodenschatz,et al.  Turbulent Rayleigh–Bénard convection for a Prandtl number of 0.67 , 2009, Journal of Fluid Mechanics.

[26]  Michael Hansen,et al.  Die Geschwindigkeitsverteilung in der Grenzschicht an einer eingetauchten Platte , 1928 .

[27]  Katepalli R. Sreenivasan,et al.  The wind in confined thermal convection , 2001, Journal of Fluid Mechanics.

[28]  D. Funfschilling,et al.  Logarithmic temperature profiles in turbulent Rayleigh-Bénard convection. , 2012, Physical review letters.

[29]  K. Xia,et al.  Heat transport by turbulent Rayleigh–Bénard convection in 1 m diameter cylindrical cells of widely varying aspect ratio , 2005, Journal of Fluid Mechanics.

[30]  D. Lohse,et al.  Prandtl and Rayleigh number dependence of the Reynolds number in turbulent thermal convection. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[31]  Detlef Lohse,et al.  Radial boundary layer structure and Nusselt number in Rayleigh–Bénard convection , 2009, Journal of Fluid Mechanics.

[32]  B. Castaing,et al.  Side wall effects in Rayleigh Bénard experiments , 2001 .

[33]  F. Chillà,et al.  Turbulent Rayleigh–Bénard convection in gaseous and liquid He , 2001 .

[34]  Katepalli R. Sreenivasan,et al.  Turbulent convection at high Rayleigh numbers and aspect ratio 4 , 2006, Journal of Fluid Mechanics.

[35]  D. Lohse,et al.  Multiple scaling in the ultimate regime of thermal convection , 2011 .

[36]  Zhiming Lu,et al.  Experimental investigation of longitudinal space–time correlations of the velocity field in turbulent Rayleigh–Bénard convection , 2010, Journal of Fluid Mechanics.

[37]  P. Tong,et al.  Kraichnan's random sweeping hypothesis in homogeneous turbulent convection. , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[38]  V. Steinberg,et al.  Strong symmetrical non-Oberbeck-Boussinesq turbulent convection and the role of compressibility , 2010 .

[39]  Chao Sun,et al.  Scaling of the Reynolds number in turbulent thermal convection. , 2005, Physical review. E, Statistical, nonlinear, and soft matter physics.

[40]  U. Muller,et al.  Turbulent Rayleigh-Benard convection in low Prandtl-number fluids , 1999 .

[41]  Eric D. Siggia,et al.  High Rayleigh Number Convection , 1994 .

[42]  S. Cioni,et al.  Strongly turbulent Rayleigh–Bénard convection in mercury: comparison with results at moderate Prandtl number , 1997, Journal of Fluid Mechanics.

[43]  S. Zaleski,et al.  Scaling of hard thermal turbulence in Rayleigh-Bénard convection , 1989, Journal of Fluid Mechanics.

[44]  D. Lohse,et al.  Thermal convection for large Prandtl numbers. , 2000, Physical review letters.

[45]  Eric Brown,et al.  Heat transport in turbulent Rayleigh-Bénard convection: Effect of finite top- and bottom-plate conductivities , 2005 .

[46]  K. R. Sreenivasan,et al.  Turbulent convection at very high Rayleigh numbers , 1999, Nature.

[47]  G. Ahlers,et al.  Heat transport by turbulent rotating Rayleigh–Bénard convection and its dependence on the aspect ratio , 2011, Journal of Fluid Mechanics.

[48]  Richard J Goldstein,et al.  High-Rayleigh-number convection of pressurized gases in a horizontal enclosure , 2002, Journal of Fluid Mechanics.

[49]  D. Lohse,et al.  Boundary layers in rotating weakly turbulent Rayleigh–Bénard convection , 2010, Physics of Fluids.

[50]  G. He,et al.  Small-scale turbulent fluctuations beyond Taylor's frozen-flow hypothesis. , 2010, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  L. Skrbek,et al.  Effect of boundary layers asymmetry on heat transfer efficiency in turbulent Rayleigh-Bénard convection at very high Rayleigh numbers [corrected]. , 2012, Physical review letters.

[52]  Roberto Verzicco,et al.  Prandtl number effects in convective turbulence , 1999 .

[53]  G. He,et al.  Space-time correlations of fluctuating velocities in turbulent shear flows. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[54]  D. Lohse,et al.  Fluctuations in turbulent Rayleigh-Bénard convection: The role of plumes , 2004 .

[55]  T. N. Stevenson,et al.  Fluid Mechanics , 2021, Nature.

[56]  D. Lohse,et al.  Effect of aspect-ratio on vortex distribution and heat transfer in rotating Rayleigh-Bénard convection , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[57]  Eberhard Bodenschatz,et al.  Transition to the ultimate state of turbulent Rayleigh-Bénard convection. , 2012, Physical review letters.

[58]  J. Schmalzl,et al.  Effect of inertia in Rayleigh-Bénard convection. , 2004, Physical review. E, Statistical, nonlinear, and soft matter physics.

[59]  D. Funfschilling,et al.  Heat transport by turbulent Rayleigh–Bénard convection in cylindrical samples with aspect ratio one and larger , 2005, Journal of Fluid Mechanics.

[60]  Detlef Lohse,et al.  Prandtl and Rayleigh number dependence of heat transport in high Rayleigh number thermal convection , 2011, Journal of Fluid Mechanics.

[61]  M. Wilczek,et al.  Dissipation layers in Rayleigh-Bénard convection: a unifying view. , 2012, Physical review letters.

[62]  Robert Kaiser,et al.  On the triggering of the Ultimate Regime of convection , 2012, 1202.0661.

[63]  M. Sano,et al.  Evidence against ‘ultrahard’ thermal turbulence at very high Rayleigh numbers , 1999, Nature.

[64]  Eberhard Bodenschatz,et al.  Heat transport by turbulent Rayleigh–Bénard convection for Pr ≃ 0.8 and 4 × 1011 ≲ Ra ≲ 2 × 1014: ultimate-state transition for aspect ratio Γ = 1.00 , 2012, 1205.5907.