A zero-overhead self-timed 160-ns 54-b CMOS divider

The authors describe the design of a custom integrated circuit for the arithmetic operation of division. The chip uses self-timing to avoid the need for high-speed clocks and directly concatenates precharged function blocks without latches. Internal stages form a ring that cycles without any external signaling. The self-timed control introduces no serial overhead, making the total chip latency equal just the combinational logic delays of the data elements. The ring's data path uses embedded completion encoding and generates the mantissa of a 54-b (floating-point IEEE double-precision) result. Fabricated in 1.2- mu m CMOS, the ring occupies 7 mm/sup 2/ and generates a quotient and done indication in 45 to 160 ns, depending on the particular data operands. >

[1]  T. E. Williams,et al.  A 160 ns 54 bit CMOS division implementation using self-timing and symmetrically overlapped SRT stages , 1991, [1991] Proceedings 10th IEEE Symposium on Computer Arithmetic.

[2]  Mark Horowitz,et al.  SPIM: a pipelined 64*64-bit iterative multiplier , 1989 .

[3]  T. E. Williarns,et al.  A Zero-overhead Self-timed 160ns 54b CMOS Divider , 1991, 1991 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[4]  James E. Robertson,et al.  A New Class of Digital Division Methods , 1958, IRE Trans. Electron. Comput..

[5]  M. Horowitz,et al.  A Pipelined 64x64b Iterative Array Multiplier , 1988, 1988 IEEE International Solid-State Circuits Conference, 1988 ISSCC. Digest of Technical Papers.

[6]  Mark R. Greenstreet,et al.  Self-Timed Iteration , 1987 .

[7]  W. McAllister,et al.  An NMOS 64b floating-point chip set , 1986, 1986 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[8]  N. Bedard,et al.  Design of a high-speed arithmetic datapath , 1988, Proceedings 1988 IEEE International Conference on Computer Design: VLSI.

[9]  George S. Taylor Radix 16 SRT dividers with overlapped quotient selection stages: A 225 nanosecond double precision divider for the S-1 Mark IIB , 1985, 1985 IEEE 7th Symposium on Computer Arithmetic (ARITH).

[10]  Rajiv V. Joshi,et al.  A 2ns Cycle, 4ns Access 512kb CMOS ECL SRAM , 1991, 1991 IEEE International Solid-State Circuits Conference. Digest of Technical Papers.

[11]  Damiel E. Atkins Higher-Radix Division Using Estimates of the Divisor and Partial Remainders , 1968, IEEE Transactions on Computers.

[12]  Steven M. Burns,et al.  The design of an asynchronous microprocessor , 1989, CARN.

[13]  Teresa H. Y. Meng,et al.  Automatic synthesis of asynchronous circuits from high-level specifications , 1989, IEEE Trans. Comput. Aided Des. Integr. Circuits Syst..

[14]  Walter L. Whipple Comments on "Higher-Radix Division Using Estimates of the Divisor and Partial Remainder" , 1969, IEEE Trans. Computers.

[15]  JohnsonMark,et al.  The MIPS R3010 Floating-Point Coprocessor , 1988 .

[16]  G. Wolrich,et al.  A high performance floating point coprocessor , 1984, IEEE Journal of Solid-State Circuits.

[17]  Mark Horowitz,et al.  SRT division diagrams and their usage in designing intergrated circuits for division , 1986 .

[18]  Mark Horowitz,et al.  IRSIM: An Incremental MOS Switch-Level Simulator , 1989, 26th ACM/IEEE Design Automation Conference.

[19]  Ted Eugene Williams,et al.  Self-timed rings and their application to division , 1992 .

[20]  Jan Fandrianto Algorithm for high speed shared radix 8 division and radix 8 square root , 1989, Proceedings of 9th Symposium on Computer Arithmetic.