Eye lens-derived Δ14C signatures validate extreme longevity in the deepwater scorpaenid blackbelly rosefish (Helicolenus dactylopterus)

[1]  William F. Patterson,et al.  Application of the Bomb Radiocarbon Chronometer with Eye Lens Core Δ14C for Age Validation in Deepwater Reef Fishes , 2023, Canadian Journal of Fisheries and Aquatic Sciences.

[2]  J. Cope,et al.  Development and considerations for application of a longevity-based prior for the natural mortality rate , 2022, Fisheries Research.

[3]  D. Kaufman,et al.  Can Amino Acid Racemization Be Utilized for Fish Age Validation? , 2022, Canadian Journal of Fisheries and Aquatic Sciences.

[4]  Alan Hart,et al.  Review of life history parameters and preliminary age estimates of some New Zealand deep-sea fishes , 2020 .

[5]  S. Lowerre‐Barbieri,et al.  Eye lens Δ14C validates otolith-derived age estimates of Gulf of Mexico reef fishes , 2020, Canadian Journal of Fisheries and Aquatic Sciences.

[6]  J. Chanton,et al.  Life history of northern Gulf of Mexico Warsaw grouper Hyporthodus nigritus inferred from otolith radiocarbon analysis , 2020, PLoS ONE.

[7]  S. Hernández‐León,et al.  The estimation of metabolism in the mesopelagic zone: Disentangling deep-sea zooplankton respiration , 2019, Progress in Oceanography.

[8]  Melissa A. Haltuch,et al.  How does growth misspecification affect management advice derived from an integrated fisheries stock assessment model? , 2019, Fisheries Research.

[9]  J. Chanton,et al.  Linear decline in red snapper (Lutjanus campechanus) otolith &Dgr;14C extends the utility of the bomb radiocarbon chronometer for fish age validation in the Northern Gulf of Mexico , 2018 .

[10]  E. Peebles,et al.  Chemical archives in fishes beyond otoliths: A review on the use of other body parts as chronological recorders of microchemical constituents for expanding interpretations of environmental, ecological, and life‐history changes , 2017 .

[11]  S. Henson,et al.  Role of zooplankton in determining the efficiency of the biological carbon pump , 2016 .

[12]  B. Gillanders,et al.  Investigating bomb radiocarbon transport in the southern Pacific Ocean with otolith radiocarbon , 2015 .

[13]  C. Simpfendorfer,et al.  Patterns in life history traits of deep-water chondrichthyans , 2015 .

[14]  A. Andrews,et al.  Age estimation and lead-radium dating of golden tilefish, Lopholatilus chamaeleonticeps , 2015, Environmental Biology of Fishes.

[15]  J. Heifetz,et al.  Statistical distribution of age readings of known-age sablefish (Anoplopoma fimbria) , 2012 .

[16]  J. Thorson,et al.  Linking fishing mortality reference points to life history traits: an empirical study , 2012 .

[17]  J. Blanchard,et al.  Fisheries Assessment and Management: A Synthesis of Common Approaches with Special Reference to Deepwater and Data-Poor Stocks , 2012 .

[18]  I. Ekeland,et al.  Sustainability of deep-sea fisheries , 2012 .

[19]  R. Moyer,et al.  Coral skeletal carbon isotopes (δ13C and Δ14C) record the delivery of terrestrial carbon to the coastal waters of Puerto Rico , 2011, Coral Reefs.

[20]  M. Moyano,et al.  Carbon sequestration and zooplankton lunar cycles: Could we be missing a major component of the biological pump? , 2010 .

[21]  M. Rogers,et al.  Evaluation of procedures to reduce bias in fish growth parameter estimates resulting from size-selective sampling , 2010 .

[22]  G. R. Fitzhugh,et al.  Validation of yellowedge grouper, Epinephelus flavolimbatus, age using nuclear bomb-produced radiocarbon , 2009, Environmental Biology of Fishes.

[23]  K. Filer,et al.  Age, growth and reproduction of the barrelfish Hyperoglyphe perciformis (Mitchill) in the western North Atlantic , 2008 .

[24]  J. van Marle,et al.  Development and adult morphology of the eye lens in the zebrafish. , 2007, Experimental eye research.

[25]  C. Eakin,et al.  A review of modern coral δ18O and Δ14C proxy records , 2007 .

[26]  K. J. Goldman,et al.  Age and growth studies of chondrichthyan fishes: the need for consistency in terminology, verification, validation, and growth function fitting , 2006, Environmental Biology of Fishes.

[27]  M. Casadevall,et al.  How does the northern Mediterranean population of Helicolenus dactylopterus dactylopterus resist fishing pressure , 2006 .

[28]  K. Hüssy,et al.  Atlantic cod (Gadus morhua) growth and otolith accretion characteristics modelled in a bioenergetics context , 2004 .

[29]  G. Cailliet,et al.  Radiocarbon in otoliths of yelloweye rockfish (Sebastes ruberrimus): a reference time series for the coastal waters of southeast Alaska , 2003 .

[30]  Charles A. Wilson,et al.  Use of bomb radiocarbon to validate otolith section ages of red snapper Lutjanus campechanus from the northern Gulf of Mexico , 2001 .

[31]  S. Campana,et al.  Accuracy, precision and quality control in age determination, including a review of the use and abuse of age validation methods , 2001 .

[32]  Pascal Lorance,et al.  Continental slope and deep-sea fisheries: implications for a fragile ecosystem , 2000 .

[33]  P. Connolly,et al.  Age estimation, growth, maturity, and distribution of the bluemouth rockfish Helicolenus d. dactylopterus (Delaroche 1809) from the Rockall Trough , 1999 .

[34]  G. Sedberry,et al.  Age, growth, and reproductive biology of the blackbelly rosefish from the Carolinas, U.S.A. , 1998 .

[35]  David C. Smith,et al.  Use of the bomb radiocarbon chronometer for age validation in the blue grenadier Macruronus novaezelandiae , 1997 .

[36]  David C. Smith,et al.  Mean length, age, and otolith weight as potential indicators of biomass depletion for orange roughy, Hoplostethus atlanticus , 1995 .

[37]  S. Short,et al.  Age determination and growth of orange roughy (Hoplostethus atlanticus): a comparison of annulus counts with radiometric ageing , 1995 .

[38]  D. Rubin,et al.  Inference from Iterative Simulation Using Multiple Sequences , 1992 .

[39]  M. Bradford,et al.  Effects of Ageing Errors on Recruitment Time Series Estimated from Sequential Population Analysis , 1991 .

[40]  Ian J. Doonan,et al.  Growth and productivity of orange roughy (Hoplostethus atlanticus) on the north Chatham Rise , 1990 .

[41]  D. Gunderson,et al.  Effects of ageing errors on estimates of growth, mortality and yield per recruit for walleye pollock (Theragra chalcogramma) , 1987 .

[42]  D. Rivard,et al.  An Analysis of Errors in Catch Projections for Canadian Atlantic Fish Stocks , 1987 .

[43]  D. Fournier,et al.  A Method for Comparing the Precision of a Set of Age Determinations , 1981 .

[44]  Zachary A. Siders,et al.  Highly variable length-at-age in vermilion snapper (Rhomboplites aurorubens) validated via Bayesian analysis of bomb radiocarbon , 2023, Fisheries Research.

[45]  R. S. Santos,et al.  Long-term changes in the diversity, abundance and size composition of deep sea demersal teleosts from the Azores assessed through surveys and commercial landings , 2019, Aquatic Living Resources.

[46]  Joseph M. O’Malley,et al.  Ageing bias and precision for deep‐water snappers: evaluating nascent otolith preparation methods using novel multivariate comparisons among readers and growth parameter estimates , 2017 .

[47]  J. Hoenig,et al.  Evaluating the predictive performance of empirical estimators of natural mortality rate using information on over 200 fish species , 2015 .

[48]  Tony J. Pitcher,et al.  Vulnerability of seamount fish to fishing: Fuzzy analysis of life-history attributes , 2006 .

[49]  Steven J. D. Martell,et al.  A new likelihood for simultaneously estimating von Bertalanffy growth parameters, gear selectivity, and natural and fishing mortality , 2005 .

[50]  H. Moser,et al.  Guide to the identification of Scorpionfish larvae (family Scorpaenidae) in the Eastern Pacific with comparative notes on species of Sebastes and Helicolenus from other oceans , 1977 .